[목표 검출] faster - rcnn demo. py 분석

13810 단어 DL
XZZPPP 에서 전 환 된 py - faster - rcnn demo. py 분석
py - faster - rcnn / tools / demo. py 파일 에 대한 분석, 실행 방식 은. / demo. py – net vgg 16 입 니 다.
#!/usr/bin/env python

# --------------------------------------------------------
# Faster R-CNN
# Copyright (c) 2015 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Ross Girshick
# --------------------------------------------------------

"""
Demo script showing detections in sample images.

See README.md for installation instructions before running.
"""

import _init_paths
from fast_rcnn.config import cfg
from fast_rcnn.test import im_detect
from fast_rcnn.nms_wrapper import nms
from utils.timer import Timer
import matplotlib.pyplot as plt  #          
import numpy as np  # numpy:      
import scipy.io as sio  # scipy.io: matlab mat         (     )
import caffe, os, sys, cv2
import argparse  # argparse: python                 

# CLASSES = ('__background__',
#           '10', '16', '17', '20',
#           '22', '23', '30')
CLASSES = ('__background__',  #   +       
           'car', 'truck')
'''   vgg16   demo.py     ,   ./demo.py --net vgg16
VGG16   ,       , .caffemodel      model   
'''
NETS = {'vgg16': ('VGG16',
                  'VGG16_faster_rcnn_final.caffemodel'),
        'vgg_m': ('VGG_CNN_M_1024',
                  'VGG_CNN_M_1024_faster_rcnn_final.caffemodel'),
        'zf': ('ZF',
               'ZF_faster_rcnn_final.caffemodel')}


def vis_detections(im, class_name, dets, thresh=0.5):
    """Draw detected bounding boxes."""
    inds = np.where(dets[:, -1] >= thresh)[0]  #               
    if len(inds) == 0:
        return

    im = im[:, :, (2, 1, 0)]
    fig, ax = plt.subplots(figsize=(12, 12))
    ax.imshow(im, aspect='equal')
    for i in inds:
        bbox = dets[i, :4]  #     (Xmin,Ymin,Xmax,Ymax)
        score = dets[i, -1]  #      
        # bbox[0]:x, bbox[1]:y, bbox[2]:x+w, bbox[3]:y+h
        ax.add_patch(
            plt.Rectangle((bbox[0], bbox[1]),
                          bbox[2] - bbox[0],
                          bbox[3] - bbox[1], fill=False,
                          edgecolor='red', linewidth=3.5)
        )
        ax.text(bbox[0], bbox[1] - 2,
                '{:s} {:.3f}'.format(class_name, score),
                bbox=dict(facecolor='blue', alpha=0.5),
                fontsize=14, color='white')

    ax.set_title(('{} detections with '
                  'p({} | box) >= {:.1f}').format(class_name, class_name,
                                                  thresh),
                 fontsize=14)
    plt.axis('off')
    plt.tight_layout()
    plt.draw()


def demo(net, image_name):
    #      ,        
    """Detect object classes in an image using pre-computed object proposals."""

    # Load the demo image
    # im_file = os.path.join(cfg.DATA_DIR, 'demo', image_name)#    
    im_file = image_name
    # print(im_file)
    # print('
')
im = cv2.imread(im_file) # # cv2.imshow("1",im) # cv2.waitKey() # Detect all object classes and regress object bounds timer = Timer() # time.time() timer.tic() # , 'time.py' scores, boxes = im_detect(net, im) # , timer.toc() # ,'time.py' print ('Detection took {:.3f}s for ' '{:d} object proposals').format(timer.total_time, boxes.shape[0]) # Visualize detections for each class CONF_THRESH = 0.5 # # CONF_THRESH = 0.7 NMS_THRESH = 0.2 # for cls_ind, cls in enumerate(CLASSES[1:]): # enumerate: cls_ind += 1 # because we skipped background , cls_ind: ,cls: cls_boxes = boxes[:, 4 * cls_ind:4 * (cls_ind + 1)] # cls_scores = scores[:, cls_ind] # dets = np.hstack((cls_boxes, # hstack: , cls_scores[:, np.newaxis])).astype(np.float32) keep = nms(dets, NMS_THRESH) dets = dets[keep, :] vis_detections(im, cls, dets, thresh=CONF_THRESH) # def parse_args(): # demo.py , """Parse input arguments.""" parser = argparse.ArgumentParser(description='Faster R-CNN demo') parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]', default=0, type=int) # GPU 0 parser.add_argument('--cpu', dest='cpu_mode', help='Use CPU mode (overrides --gpu)', action='store_true') parser.add_argument('--net', dest='demo_net', help='Network to use [vgg16]', choices=NETS.keys(), default='vgg16') # vgg16 args = parser.parse_args() return args if __name__ == '__main__': cfg.TEST.HAS_RPN = True # Use RPN for proposals args = parse_args() # , prototxt prototxt = os.path.join(cfg.MODELS_DIR, NETS[args.demo_net][0], 'faster_rcnn_alt_opt', 'faster_rcnn_test.pt') caffemodel = os.path.join(cfg.DATA_DIR, 'faster_rcnn_models', NETS[args.demo_net][1]) if not os.path.isfile(caffemodel): raise IOError(('{:s} not found.
Did you run ./data/script/'
'fetch_faster_rcnn_models.sh?').format(caffemodel)) if args.cpu_mode: caffe.set_mode_cpu() else: caffe.set_mode_gpu() caffe.set_device(args.gpu_id) cfg.GPU_ID = args.gpu_id net = caffe.Net(prototxt, caffemodel, caffe.TEST) # print '

Loaded network {:s}'
.format(caffemodel) # Warmup on a dummy image im = 128 * np.ones((300, 500, 3), dtype=np.uint8) for i in xrange(2): _, _ = im_detect(net, im) # # , txt f = open("./resize.txt") lines = f.readlines() for line in lines: line = line[:-2] + ".jpg" # windows , \r
, -2
# line=line[:-1] line = os.path.join("/home/txl/Data/resize", line)# print '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~' print 'Demo for {}'.format(line) demo(net, line) plt.show()""" """ """ im_names = ['1.jpg', '2.jpg','3.jpg','4.jpg','5.jpg','6.jpg','DJI_0269.JPG','DJI_0178.JPG'] for im_name in im_names: print '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~' print 'Demo for data/demo/{}'.format(im_name) demo(net, im_name) plt.show() """

좋은 웹페이지 즐겨찾기