자바 의 함수 식 인터페이스 @ Functional 인터페이스 상세 설명 (소스 코드 첨부)

15341 단어
자바 의 함수 식 인터페이스 @ Functional 인터페이스 상세 설명
함수 식 인터페이스의 정의
자바 8 에서 아래 의 임의의 조건 을 만족 시 키 는 인 터 페 이 스 는 모두 함수 식 인터페이스 입 니 다. 1. @ FunctionalInterface 에 의 해 주석 되 는 인터페이스 로 @ FunctionalInterface 주석 에 대한 제약 을 만족 시 킵 니 다.2. @ FunctionalInterface 에 주석 이 달 린 인터페이스 가 없 지만 @ FunctionalInterface 주석 에 대한 제약 을 만족 시 킵 니 다 @ FunctionalInterface 주석 에 대한 제약: 1. 인터페이스 가 있 고 추상 적 인 방법 만 있 을 수 있 습 니 다. 방법 만 정의 할 수 있 습 니 다. 방법 체 2. 인터페이스 에 Object 류 중의 Public 방법 을 복사 하 는 것 은 함수 식 인터페이스 방법 이 아 닙 니 다.
예 를 들 면:
@FunctionalInterface
interface FunctionalInterfaceTest {
    String getInfo(String input);
}

함수 식 인터페이스의 실례
  • lambda 표현 식
  • 방법의 인용
  • 이미 구조 기 나 방법의 인용
  • public class Main {
    
        public static void main(String[] args)
                throws ClassNotFoundException,
                IllegalAccessException,
                InstantiationException,
                NoSuchMethodException,
                InvocationTargetException, NoSuchFieldException {
            /**
             * 1、lambda   
             *         ,lambda   ,    String     ,    String     。
             *          FunctionInterfaceTest   
             */
            FunctionalInterfaceTest fiTest1 = str -> str + " copy";
            /**
             * 2、Main     functionalInterfaceTestMethod        ,      。       
             * FunctionInterfaceTest   。
             *                 (    String     ,    String     ),
             *                        。    , java                
             *      。    ,             ,               。
             */
            FunctionalInterfaceTest fiTest2 = Main::functionalInterfaceTestMethod;
            /**
             * 3、      
             *        :      ,        。               。
             *     “      ” “      ” FunctionInterfaceTest        ,
             *       FunctionInterfaceTest     ,  ,String       
             * new String(str)     ,        。
             *              ,JDK                    ,  String       。
             *        String::new,             ,          
             */
            FunctionalInterfaceTest fiTest3 = String::new;
    
            System.out.println(useFunctionalInterface("Hello World!", fiTest1));
            System.out.println(useFunctionalInterface("Hello World!", fiTest2));
            System.out.println(useFunctionalInterface("Hello World!", fiTest3));
            System.out.println(useFunctionalInterface("Hello World!", str -> str + " created by lambda in the context"));
            /**
              :
                    Hello World! copy
                            Hello World! copy 2 by reference
                Hello World!
                            Hello World! created by lambda in the context
            */
        }
        
        public static String functionalInterfaceTestMethod(String str) {
            return str + " copy 2 by reference";
        }
    
        public static String useFunctionalInterface(String str, FunctionalInterfaceTest fiT) {
            return fiT.getInfo(str);
        }
    }

    상용 봉 인 된 함수 식 인터페이스
    각각 Function, Cosumer, Predicate, Supplier
    /**
     *                ,                  。               。
     Function
         T     ,    R     
    
     Consumer
         T     ,    
    
     Predicate
         T     ,    boolean     
    
     Supplier
          ,    T     
     */
    Function add_postfix = str -> str + "postfix";
    Consumer print_string = System.out::println;
    Predicate judge_positive = n -> n > 0;
    Supplier supplier = () -> "supply";
    List list = Arrays.asList("adfsg", "sdafef", "", "s", "231243", "hgjrepjrg");
    list.stream()
            .map(str -> str + "1")
            .filter(str -> str.length() > 2)
            .sorted((str1, str2) -> str2.compareTo(str1))
            .forEach(System.out::println);
    /**
          :
                sdafef1
                hgjrepjrg1
                adfsg1
                2312431
                1234dfgh
    */

    이 밖 에 다 중 인자 의 경우 자바 가 BiFunction, BiConsumer, BiPredicate 를 봉인 했다.
    //   java        ,    BiSupplier
            BiFunction combine_string = (str1, str2) -> str1 + str2;
            BiConsumer print_two_string = (str1, str2) -> System.out.println(str1 + str2);
            BiPredicate str_equal = String::equals;
            int bif_result = biFunctionTestMethod("abs", "pdf", (str1, str2) -> str1.length() + str2.length());
            biConsumerTestMethod("1234", "dfgh", (str1, str2) -> System.out.println(str1 + str2));
            boolean bip_result_1 = biPredictTestMethod("abc", "abc", str_equal),
                    bip_result_2 = biPredictTestMethod("abc", "def", str_equal);
            System.out.println(bif_result);
            System.out.println(bip_result_1);
            System.out.println(bip_result_2);
    /*
              :
                    6
                    true
                    false
    */

    그 밖 에 compose 와 andThen 방법 도 있 습 니 다. 그 본질은 수학 에서 함수 에 부합 되 는 것 입 니 다. 유일한 차이 점 은 함수 \ (f (x), g (x) \), compose 등 가 는 \ (f (g (x) \), andThen 등 가 는 \ (g (f (x) \) 와 같 습 니 다. 실행 순서 가 다 를 뿐 입 니 다.
    // compose   andThen
    Function compose_function = ((Function) (str -> str + "abc")).compose((Function) (str -> str + str.length()));
    System.out.println("Compose function: " + compose_function.apply("Hello World! "));
    Function andThen_function = ((Function) (str -> str + "abc")).andThen((Function) (str -> str + str.length()));
    System.out.println("AndThen function: " + andThen_function.apply("Hello World! "));
    // Bicosumer, cosumer, bifunction       
    
    // BiPredicate, Predicate   and, or, negate
    System.out.println(str_equal.negate().test("a", "a")); // false
    System.out.println(judge_positive.and(n -> n > 2).test(5)); // true
    System.out.println(judge_positive.or(n -> n < -1).test(-10)); // true

    소스 코드
    Function.java
    /**
     * Represents a function that accepts one argument and produces a result.
     *
     * 

    This is a functional interface * whose functional method is {@link #apply(Object)}. * * @param the type of the input to the function * @param the type of the result of the function * * @since 1.8 */ @FunctionalInterface public interface Function { /** * Applies this function to the given argument. * * @param t the function argument * @return the function result */ R apply(T t); /** * Returns a composed function that first applies the {@code before} * function to its input, and then applies this function to the result. * If evaluation of either function throws an exception, it is relayed to * the caller of the composed function. * * @param the type of input to the {@code before} function, and to the * composed function * @param before the function to apply before this function is applied * @return a composed function that first applies the {@code before} * function and then applies this function * @throws NullPointerException if before is null * * @see #andThen(Function) */ default Function compose(Function super V, ? extends T> before) { Objects.requireNonNull(before); return (V v) -> apply(before.apply(v)); } /** * Returns a composed function that first applies this function to * its input, and then applies the {@code after} function to the result. * If evaluation of either function throws an exception, it is relayed to * the caller of the composed function. * * @param the type of output of the {@code after} function, and of the * composed function * @param after the function to apply after this function is applied * @return a composed function that first applies this function and then * applies the {@code after} function * @throws NullPointerException if after is null * * @see #compose(Function) */ default Function andThen(Function super R, ? extends V> after) { Objects.requireNonNull(after); return (T t) -> after.apply(apply(t)); } /** * Returns a function that always returns its input argument. * * @param the type of the input and output objects to the function * @return a function that always returns its input argument */ static Function identity() { return t -> t; } }


    Consumer.java
    /**
     * Represents an operation that accepts a single input argument and returns no
     * result. Unlike most other functional interfaces, {@code Consumer} is expected
     * to operate via side-effects.
     *
     * 

    This is a functional interface * whose functional method is {@link #accept(Object)}. * * @param the type of the input to the operation * * @since 1.8 */ @FunctionalInterface public interface Consumer { /** * Performs this operation on the given argument. * * @param t the input argument */ void accept(T t); /** * Returns a composed {@code Consumer} that performs, in sequence, this * operation followed by the {@code after} operation. If performing either * operation throws an exception, it is relayed to the caller of the * composed operation. If performing this operation throws an exception, * the {@code after} operation will not be performed. * * @param after the operation to perform after this operation * @return a composed {@code Consumer} that performs in sequence this * operation followed by the {@code after} operation * @throws NullPointerException if {@code after} is null */ default Consumer andThen(Consumer super T> after) { Objects.requireNonNull(after); return (T t) -> { accept(t); after.accept(t); }; } }


    Predicate.java
    /**
     * Represents a predicate (boolean-valued function) of one argument.
     *
     * 

    This is a functional interface * whose functional method is {@link #test(Object)}. * * @param the type of the input to the predicate * * @since 1.8 */ @FunctionalInterface public interface Predicate { /** * Evaluates this predicate on the given argument. * * @param t the input argument * @return {@code true} if the input argument matches the predicate, * otherwise {@code false} */ boolean test(T t); /** * Returns a composed predicate that represents a short-circuiting logical * AND of this predicate and another. When evaluating the composed * predicate, if this predicate is {@code false}, then the {@code other} * predicate is not evaluated. * *

    Any exceptions thrown during evaluation of either predicate are relayed * to the caller; if evaluation of this predicate throws an exception, the * {@code other} predicate will not be evaluated. * * @param other a predicate that will be logically-ANDed with this * predicate * @return a composed predicate that represents the short-circuiting logical * AND of this predicate and the {@code other} predicate * @throws NullPointerException if other is null */ default Predicate and(Predicate super T> other) { Objects.requireNonNull(other); return (t) -> test(t) && other.test(t); } /** * Returns a predicate that represents the logical negation of this * predicate. * * @return a predicate that represents the logical negation of this * predicate */ default Predicate negate() { return (t) -> !test(t); } /** * Returns a composed predicate that represents a short-circuiting logical * OR of this predicate and another. When evaluating the composed * predicate, if this predicate is {@code true}, then the {@code other} * predicate is not evaluated. * *

    Any exceptions thrown during evaluation of either predicate are relayed * to the caller; if evaluation of this predicate throws an exception, the * {@code other} predicate will not be evaluated. * * @param other a predicate that will be logically-ORed with this * predicate * @return a composed predicate that represents the short-circuiting logical * OR of this predicate and the {@code other} predicate * @throws NullPointerException if other is null */ default Predicate or(Predicate super T> other) { Objects.requireNonNull(other); return (t) -> test(t) || other.test(t); } /** * Returns a predicate that tests if two arguments are equal according * to {@link Objects#equals(Object, Object)}. * * @param the type of arguments to the predicate * @param targetRef the object reference with which to compare for equality, * which may be {@code null} * @return a predicate that tests if two arguments are equal according * to {@link Objects#equals(Object, Object)} */ static Predicate isEqual(Object targetRef) { return (null == targetRef) ? Objects::isNull : object -> targetRef.equals(object); } /** * Returns a predicate that is the negation of the supplied predicate. * This is accomplished by returning result of the calling * {@code target.negate()}. * * @param the type of arguments to the specified predicate * @param target predicate to negate * * @return a predicate that negates the results of the supplied * predicate * * @throws NullPointerException if target is null * * @since 11 */ @SuppressWarnings("unchecked") static Predicate not(Predicate super T> target) { Objects.requireNonNull(target); return (Predicate)target.negate(); } }


    Supplier.java
    /**
     * Represents a supplier of results.
     *
     * 

    There is no requirement that a new or distinct result be returned each * time the supplier is invoked. * *

    This is a functional interface * whose functional method is {@link #get()}. * * @param the type of results supplied by this supplier * * @since 1.8 */ @FunctionalInterface public interface Supplier { /** * Gets a result. * * @return a result */ T get(); }

    좋은 웹페이지 즐겨찾기