컨벌루션 신경망 Part6 [TensorFlow2.0에서 Deep Learning 9]
소개
 컨벌루션 신경망 Part6 [TensorFlow에서 Deep Learning 9]을 tensorflow2.0에서 실현하기 위해서는 어떻게 해야 하는지를 쓴다( tf.keras ).
 코드
Python: 3.6.8, Tensorflow: 2.0.0a0에서 작동 확인됨
 컨벌루션 신경망 Part6 [TensorFlow에서 Deep Learning 9] ( m에 st_cn_ml. py )을 다시 쓰면,
 v2/mnist_cnn_ml.py
v2/mnist_cnn_ml.pyfrom helper import *
IMAGE_WIDTH, IMAGE_HEIGHT, IMAGE_DEPTH = 28, 28, 1
CATEGORY_NUM = 10
LEARNING_RATE = 0.1
FILTER_SIZE1, FILTER_SIZE2 = 5, 7
FILTER_NUM1, FILTER_NUM2 = 32, 64
FEATURE_DIM = 1024
KEEP_PROB = 0.5
EPOCHS = 20
BATCH_SIZE = 100
LOG_DIR = 'log_cnn_ml'
if __name__ == '__main__':
    sh = (IMAGE_HEIGHT, IMAGE_WIDTH, IMAGE_DEPTH)
    (X_train, y_train), (X_test, y_test) = mnist_samples(shape=sh)
    model = tf.keras.models.Sequential()
    model.add(tf.keras.layers.Conv2D(FILTER_NUM1, (FILTER_SIZE1, FILTER_SIZE1), input_shape=sh))
    model.add(tf.keras.layers.MaxPool2D(pool_size=(2, 2)))
    model.add(tf.keras.layers.Conv2D(FILTER_NUM2, (FILTER_SIZE2, FILTER_SIZE2)))
    model.add(tf.keras.layers.MaxPool2D(pool_size=(2, 2)))
    model.add(tf.keras.layers.Flatten())
    model.add(tf.keras.layers.Dense(FEATURE_DIM, activation='relu'))
    model.add(tf.keras.layers.Dropout(rate=1-KEEP_PROB))
    model.add(tf.keras.layers.Dense(CATEGORY_NUM, activation='softmax'))
    model.compile(
            loss='categorical_crossentropy',
            optimizer=tf.keras.optimizers.SGD(LEARNING_RATE), metrics=['accuracy'])
    cb = [tf.keras.callbacks.TensorBoard(log_dir=LOG_DIR)]
    model.fit(X_train, y_train, batch_size=BATCH_SIZE, epochs=EPOCHS, callbacks=cb, validation_data=(X_test, y_test))
    print(model.evaluate(X_test, y_test))
라고 쓸 수 있다.
 v2/mnist_cnn_sl.py 과의 차이는,
(FILTER_NUM1 , FILTER_NUM2Conv2D 와 MaxPool2D 를 늘리는 것만.
     (X_train, y_train), (X_test, y_test) = mnist_samples(shape=sh)
     model = tf.keras.models.Sequential()
-    model.add(tf.keras.layers.Conv2D(FILTER_NUM, (FILTER_SIZE, FILTER_SIZE), input_shape=sh))
+    model.add(tf.keras.layers.Conv2D(FILTER_NUM1, (FILTER_SIZE1, FILTER_SIZE1), input_shape=sh))
+    model.add(tf.keras.layers.MaxPool2D(pool_size=(2, 2)))
+    model.add(tf.keras.layers.Conv2D(FILTER_NUM2, (FILTER_SIZE2, FILTER_SIZE2)))
     model.add(tf.keras.layers.MaxPool2D(pool_size=(2, 2)))
     model.add(tf.keras.layers.Flatten())
제대로 움직이고 있다.
 
                
                    
        
    
    
    
    
    
                
                
                
                
                    
                        
                            
                            
                            Reference
                            
                            이 문제에 관하여(컨벌루션 신경망 Part6 [TensorFlow2.0에서 Deep Learning 9]), 우리는 이곳에서 더 많은 자료를 발견하고 링크를 클릭하여 보았다
                                
                                https://qiita.com/kumonkumon/items/d10a81dd39e74add2a91
                            
                            
                            
                                텍스트를 자유롭게 공유하거나 복사할 수 있습니다.하지만 이 문서의 URL은 참조 URL로 남겨 두십시오.
                            
                            
                                
                                
                                
                                
                                
                                우수한 개발자 콘텐츠 발견에 전념
                                (Collection and Share based on the CC Protocol.)
                            
                            
                        
                    
                
                
                
            
Python: 3.6.8, Tensorflow: 2.0.0a0에서 작동 확인됨
컨벌루션 신경망 Part6 [TensorFlow에서 Deep Learning 9] ( m에 st_cn_ml. py )을 다시 쓰면,
v2/mnist_cnn_ml.py
v2/mnist_cnn_ml.py
from helper import *
IMAGE_WIDTH, IMAGE_HEIGHT, IMAGE_DEPTH = 28, 28, 1
CATEGORY_NUM = 10
LEARNING_RATE = 0.1
FILTER_SIZE1, FILTER_SIZE2 = 5, 7
FILTER_NUM1, FILTER_NUM2 = 32, 64
FEATURE_DIM = 1024
KEEP_PROB = 0.5
EPOCHS = 20
BATCH_SIZE = 100
LOG_DIR = 'log_cnn_ml'
if __name__ == '__main__':
    sh = (IMAGE_HEIGHT, IMAGE_WIDTH, IMAGE_DEPTH)
    (X_train, y_train), (X_test, y_test) = mnist_samples(shape=sh)
    model = tf.keras.models.Sequential()
    model.add(tf.keras.layers.Conv2D(FILTER_NUM1, (FILTER_SIZE1, FILTER_SIZE1), input_shape=sh))
    model.add(tf.keras.layers.MaxPool2D(pool_size=(2, 2)))
    model.add(tf.keras.layers.Conv2D(FILTER_NUM2, (FILTER_SIZE2, FILTER_SIZE2)))
    model.add(tf.keras.layers.MaxPool2D(pool_size=(2, 2)))
    model.add(tf.keras.layers.Flatten())
    model.add(tf.keras.layers.Dense(FEATURE_DIM, activation='relu'))
    model.add(tf.keras.layers.Dropout(rate=1-KEEP_PROB))
    model.add(tf.keras.layers.Dense(CATEGORY_NUM, activation='softmax'))
    model.compile(
            loss='categorical_crossentropy',
            optimizer=tf.keras.optimizers.SGD(LEARNING_RATE), metrics=['accuracy'])
    cb = [tf.keras.callbacks.TensorBoard(log_dir=LOG_DIR)]
    model.fit(X_train, y_train, batch_size=BATCH_SIZE, epochs=EPOCHS, callbacks=cb, validation_data=(X_test, y_test))
    print(model.evaluate(X_test, y_test))
라고 쓸 수 있다.
v2/mnist_cnn_sl.py 과의 차이는,
(
FILTER_NUM1 , FILTER_NUM2Conv2D 와 MaxPool2D 를 늘리는 것만.     (X_train, y_train), (X_test, y_test) = mnist_samples(shape=sh)
     model = tf.keras.models.Sequential()
-    model.add(tf.keras.layers.Conv2D(FILTER_NUM, (FILTER_SIZE, FILTER_SIZE), input_shape=sh))
+    model.add(tf.keras.layers.Conv2D(FILTER_NUM1, (FILTER_SIZE1, FILTER_SIZE1), input_shape=sh))
+    model.add(tf.keras.layers.MaxPool2D(pool_size=(2, 2)))
+    model.add(tf.keras.layers.Conv2D(FILTER_NUM2, (FILTER_SIZE2, FILTER_SIZE2)))
     model.add(tf.keras.layers.MaxPool2D(pool_size=(2, 2)))
     model.add(tf.keras.layers.Flatten())
제대로 움직이고 있다.
                Reference
이 문제에 관하여(컨벌루션 신경망 Part6 [TensorFlow2.0에서 Deep Learning 9]), 우리는 이곳에서 더 많은 자료를 발견하고 링크를 클릭하여 보았다 https://qiita.com/kumonkumon/items/d10a81dd39e74add2a91텍스트를 자유롭게 공유하거나 복사할 수 있습니다.하지만 이 문서의 URL은 참조 URL로 남겨 두십시오.
                                
                                
                                
                                
                                
                                우수한 개발자 콘텐츠 발견에 전념
                                (Collection and Share based on the CC Protocol.)