CodeForces 629D Babaei and Birthday Cake(세그먼트 트리 유지 관리 DP)

4225 단어
제목: n개의 케이크가 있다. 그리고 i번째 케이크는 바닥에 놓거나 부피와 번호가 그보다 작은 위에 놓을 수 있다. 그리고 부피가 가장 많으면 얼마나 쌓일 수 있느냐고 묻는다.
사고방식: 라인 트리로 DP를 유지한다. 분명히 이 물건과lis(최장 상승자 서열)는 우리가 먼저 모든 물건의 부피를 분리한 다음에 우리가 그보다 작은 최대치를 선택한 다음에 업데이트를 하면 된다.
#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e5+6;
typedef double SgTreeDataType;
struct treenode
{
  int L , R  ;
  double sum;
  int num;

};

treenode tree[500000];


inline void push_up(int o)
{
    tree[o].sum = max(tree[2*o].sum , tree[2*o+1].sum);
    if(tree[2*o].sum>tree[2*o+1].sum)
        tree[o].num=tree[2*o].num;
    else
        tree[o].num=tree[2*o+1].num;
}

inline void build_tree(int L , int R , int o)
{
    tree[o].L = L , tree[o].R = R,tree[o].sum = 0;
    tree[o].num = L;
    if (R > L)
    {
        int mid = (L+R) >> 1;
        build_tree(L,mid,o*2);
        build_tree(mid+1,R,o*2+1);
    }
}
inline void updata2(int QL,int QR,SgTreeDataType v,int o)
{
    int L = tree[o].L , R = tree[o].R;
    if (QL <= L && R <= QR)
    {
        tree[o].sum=max(tree[o].sum,v);
    }
    else
    {
        int mid = (L+R)>>1;
        if (QL <= mid) updata2(QL,QR,v,o*2);
        if (QR >  mid) updata2(QL,QR,v,o*2+1);
        push_up(o);
    }
}
inline SgTreeDataType query(int QL,int QR,int o)
{
    if(QR<QL)return 0;
    int L = tree[o].L , R = tree[o].R;
    if (QL <= L && R <= QR) return tree[o].sum;
    else
    {
        int mid = (L+R)>>1;
        SgTreeDataType res = 0;
        if (QL <= mid) res = max(query(QL,QR,2*o),res);
        if (QR > mid) res = max(query(QL,QR,2*o+1),res);
        push_up(o);
        return res;
    }
}


double h[maxn],r[maxn],v[maxn];
const double pi = acos(-1.0);
vector<double>V;
map<double,int> H;
int main()
{
    int n;
    scanf("%d",&n);
    for(int i=1;i<=n;i++)
    {
        scanf("%lf%lf",&r[i],&h[i]),v[i]=pi*r[i]*r[i]*h[i];
        V.push_back(v[i]);
    }
    sort(V.begin(),V.end());
    V.erase(unique(V.begin(),V.end()),V.end());
    for(int i=0;i<V.size();i++)
        H[V[i]]=i+1;
    build_tree(1,n,1);
    for(int i=1;i<=n;i++)
    {
        double p = v[i]+query(1,H[v[i]]-1,1);
        updata2(H[v[i]],H[v[i]],p,1);
    }
    printf("%.12f
",tree[1].sum); return 0; }

Description
As you know, every birthday party has a cake! This time, Babaei is going to prepare the very special birthday party's cake.
Simple cake is a cylinder of some radius and height. The volume of the simple cake is equal to the volume of corresponding cylinder. Babaei has n simple cakes and he is going to make a special cake placing some cylinders on each other.
However, there are some additional culinary restrictions. The cakes are numbered in such a way that the cake number i can be placed only on the table or on some cake number j where j < i. Moreover, in order to impress friends Babaei will put the cake i on top of the cake j only if the volume of the cake i is strictly greater than the volume of the cake j.
Babaei wants to prepare a birthday cake that has a maximum possible total volume. Help him find this value.
Input
The first line of the input contains a single integer n (1 ≤ n ≤ 100 000) — the number of simple cakes Babaei has.
Each of the following n lines contains two integers ri and hi (1 ≤ ri, hi ≤ 10 000), giving the radius and height of the i-th cake.
Output
Print the maximum volume of the cake that Babaei can make. Your answer will be considered correct if its absolute or relative error does not exceed 10 - 6.
Namely: let's assume that your answer is a, and the answer of the jury is b. The checker program will consider your answer correct, if .
Sample Input
Input
2
100 30
40 10

Output
942477.796077000

Input
4
1 1
9 7
1 4
10 7

Output
3983.539484752

Hint
In first sample, the optimal way is to choose the cake number 1.
In second sample, the way to get the maximum volume is to use cakes with indices 1, 2 and 4.

좋은 웹페이지 즐겨찾기