Codeforces Round #301 (Div. 2) E . Infinite Inversions 트리 배열 역순

19882 단어 codeforces
E. Infinite Inversions
                                                                                         time limit per test
                                                                                              2 seconds
                                                                                      memory limit per test
                                                                                          256 megabytes
                                                                                     input standard input
                              output standard output
 
There is an infinite sequence consisting of all positive integers in the increasing order: p = {1, 2, 3, ...}. We performed n swapoperations with this sequence. A swap(a, b) is an operation of swapping the elements of the sequence on positions a and b. Your task is to find the number of inversions in the resulting sequence, i.e. the number of such index pairs (i, j), that i < j and pi > pj.
Input
The first line contains a single integer n (1 ≤ n ≤ 105) — the number of swap operations applied to the sequence.
Each of the next n lines contains two integers ai and bi (1 ≤ ai, bi ≤ 109, ai ≠ bi) — the arguments of the swap operation.
Output
Print a single integer — the number of inversions in the resulting sequence.
Sample test(s)
input
2
4 2
1 4

output
4

input
3
1 6
3 4
2 5

output
15

제목: 무한히 긴 수조(1, 2, 3, 4,......),매번 두 위치의 값을 교환하는 n회 조작.
출력은 최종적으로 몇 개의 역순 대수가 있습니까?
이 문제는 숫자가 많을 수 있기 때문에 우리는 이산화 후에 역순수를 구할 수 밖에 없다. 먼저 모든 조작을 읽고 이산화 피조작수를 구할 수 있다.피조작수 사이의 숫자는 축소해서 처리할 수 있다. (모든 숫자를 하나의 숫자로 보고 처리하는 것이다.)그리고 결과를 구할 수 있을 거예요.
  1 #include <set>

  2 #include <map>

  3 #include <cmath>

  4 #include <ctime>

  5 #include <queue>

  6 #include <stack>

  7 #include <cstdio>

  8 #include <string>

  9 #include <vector>

 10 #include <cstdlib>

 11 #include <cstring>

 12 #include <iostream>

 13 #include <algorithm>

 14 using namespace std;

 15 typedef unsigned long long ull;

 16 typedef long long ll;

 17 const int inf = 0x3f3f3f3f;

 18 const double eps = 1e-8;

 19 const int MAXN = 4e5+10;

 20 int a[MAXN], tot, n;

 21 int A[MAXN], B[MAXN];

 22 int lowbit (int x)

 23 {

 24     return x & -x;

 25 }

 26 long long arr[MAXN], M;

 27 void modify (int x, int d)

 28 {

 29     while (x < M)

 30     {

 31         arr[x] += d;

 32         x += lowbit (x);

 33     }

 34 }

 35 int sum(int x)

 36 {

 37     int ans = 0;

 38     while (x)

 39     {

 40         ans += arr[x];

 41         x -= lowbit (x);

 42     }

 43     return ans;

 44 }

 45 int p[MAXN],kk[MAXN];

 46 int main()

 47 {

 48     #ifndef ONLINE_JUDGE

 49         freopen("in.txt","r",stdin);

 50     #endif

 51     while (cin >> n)

 52     {

 53         int x, y;

 54         tot = 0;

 55         memset (arr, 0, sizeof (arr));

 56         memset(kk, 0, sizeof (kk));

 57         long long minv = inf;

 58         long long maxv = 0;

 59         map<int, int>pp;

 60         for (int i = 0; i < n; i++)

 61         {

 62             scanf ("%d%d", &x, &y);

 63             minv = min(minv, (long long)min(x, y));

 64             maxv = max(maxv, (long long)max(x, y));

 65             a[tot++] = x;

 66             a[tot++] = y;

 67             A[i] = x;

 68             B[i] = y;

 69         }

 70         sort (a, a+tot);

 71 

 72         tot = unique(a, a+tot) - a;

 73         int ok = 0;

 74         int tmp = tot;

 75         long long j = minv;

 76         int tt;

 77         vector<int>vec;

 78         for (int i = 0; i < tot; )

 79         {

 80             if (a[i] == j)

 81             {

 82                 i++;

 83                 j++;

 84                 ok = 0;

 85             }

 86             else

 87             {

 88                 if (ok == 0)            //   

 89                 {

 90                     ok = j;

 91                     a[tmp++] = j;

 92                     tt = j;

 93                     vec.push_back(tt);

 94                 }

 95                 pp[ok] += a[i]-j;

 96                 j = a[i];

 97             }

 98         }

 99         tot = tmp;

100         sort (a, a+tot);

101         for (int i = 0; i < vec.size(); i++)

102         {

103             int qq = vec[i];

104             if (pp.count(qq) >= 1)

105             {

106                 int ix = lower_bound(a, a+tot, qq)-a+1;

107                 kk[ix] = pp[qq];

108             }

109         }

110         for (int i = 0; i < n; i++)

111         {

112             A[i] = lower_bound(a,a+tot, A[i]) - a + 1;   //    

113             B[i] = lower_bound(a,a+tot, B[i]) - a + 1;

114         }

115         maxv = lower_bound(a, a+tot, maxv) - a + 1;

116         M = maxv+10;

117         for (int i = 1; i <= maxv; i++)

118         {

119             p[i] = i;

120         }

121         for (int i = 0; i < n; i++)

122         {

123             swap(p[A[i]], p[B[i]]);

124         }

125         long long ans = 0;

126         long long cnt = 0;

127         for (int i = 1; i <= maxv; i++)

128         {

129             ans += (long long)(i-1+cnt - sum(p[i]))*max(1,kk[i]);

130             modify(p[i], max(1,kk[i]));

131             cnt += max(1,kk[i]) - 1;

132         }

133         printf("%I64d
", ans); 134 } 135 return 0; 136 }

좋은 웹페이지 즐겨찾기