pandas 최대 연속 간격 계산 방법
군중 의 한 친구 가 위의 그림 과 같은 문 제 를 보 냈 는데,해결 방법 은 다음 과 같다.
data = {'a':[1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2],'b':[1,2,3,4,5,8,9,10,1,2,3,6,7,8,9,12,13]}
df = pd.DataFrame(data)
for name,group in df.groupby('a'):
group['c'] = ((group['b'].shift(1).fillna(0) + 1).astype(int) != group['b']).cumsum()
# print(group)
print(group['c'].value_counts()) # value , 1 ,value , 2 。
이상 의 pandas 가 가장 큰 연속 간격 을 계산 하 는 방법 은 바로 편집장 이 여러분 에 게 공유 한 모든 내용 입 니 다.여러분 에 게 참고 가 되 고 여러분 들 이 저 희 를 많이 사랑 해 주 셨 으 면 좋 겠 습 니 다.
이 내용에 흥미가 있습니까?
현재 기사가 여러분의 문제를 해결하지 못하는 경우 AI 엔진은 머신러닝 분석(스마트 모델이 방금 만들어져 부정확한 경우가 있을 수 있음)을 통해 가장 유사한 기사를 추천합니다:
【Pandas】DatetimeIndex란? no.29안녕하세요, 마유미입니다. Pandas에 대한 기사를 시리즈로 작성하고 있습니다. 이번은 제29회의 기사가 됩니다. 에서 Pandas의 시간에 대한 모듈에 대해 씁니다. 이번 기사에서는, 「DatetimeIndex」...
텍스트를 자유롭게 공유하거나 복사할 수 있습니다.하지만 이 문서의 URL은 참조 URL로 남겨 두십시오.
CC BY-SA 2.5, CC BY-SA 3.0 및 CC BY-SA 4.0에 따라 라이센스가 부여됩니다.