[C \ #] [원본 인용] C \ # kalman 필터 실현
8464 단어 man
며칠 동안 망 설 였 습 니 다. dsp 를 사용 하 세 요. 제 kalman 필터 산법 은 비교적 간단 하고 큰 인재 가 적 습 니 다.마침 손 에 arm 디 버 깅 버 전도 있 고 wince 시스템 도 설치 되 어 있 으 며. net 환경 에서 kalman 필 터 를 만 들 려 고 합 니 다.
비록 네 비게 이 션 학 과 를 배 웠 기 때문에 kalman 필터 에 익숙 해 야 하지만 그 당시 에 잘 배우 지 못 해서 모든 것 을 지도 교수 님 께 돌려 드 렸 습 니 다.(스승 님, 설마 이 글 을 보 시 는 건 아니 겠 죠? 홈 페이지 에 올 려 놓 으 면 안 될 것 같 습 니 다!)
그래서 인터넷 에서 관련 자 료 를 찾 을 수 밖 에 없 었 다.지금 은 게 을 러 진 것 같 아서 다른 사람의 코드 를 고 치 는 것 을 좋아 하고 생각 하고 싶 지 않 습 니 다.됐어, 어차피 한번 만.죄, 죄!
국내의 자 료 는 matlab 에 대한 알고리즘 이 비교적 많아 서 인터넷 에서 마음대로 다운 되 었 지만 C \ # 를 바탕 으로 하 는 것 이 비교적 적 습 니 다. 다행히 제 검색 능력 이 그리 나 쁘 지 않 아서 관련 자 료 를 찾 게 되 었 습 니 다.
블 로 그 를 인용 한 주 소 는: http://blog.csdn.net/csdnbao/archive/2009/09/24/4590519.aspx
문장 이 전체 알고리즘 을 다 썼 으 니 나 도 함께 붙 여 놓 자!
using System;
using System.Collections.Generic;
using System.Text;
namespace SimTransfer
{
public class KalmanFacade
{
#region inner class
class KalmanFilter
{
int MP; /* number of measurement vector dimensions */
int DP; /* number of state vector dimensions */
int CP; /* number of control vector dimensions */
public Matrix state_pre; /* predicted state (x'(k)):
x(k)=A*x(k-1)+B*u(k) */
public Matrix state_post; /* corrected state (x(k)):
x(k)=x'(k)+K(k)*(z(k)-H*x'(k)) */
public Matrix transition_matrix; /* state transition matrix (A) */
public Matrix control_matrix; /* control matrix (B)
(it is not used if there is no control)*/
public Matrix measurement_matrix; /* measurement matrix (H) */
public Matrix process_noise_cov; /* process noise covariance matrix (Q) */
public Matrix measurement_noise_cov; /* measurement noise covariance matrix (R) */
public Matrix error_cov_pre; /* priori error estimate covariance matrix (P'(k)):
P'(k)=A*P(k-1)*At + Q)*/
Matrix gain; /* Kalman gain matrix (K(k)):
K(k)=P'(k)*Ht*inv(H*P'(k)*Ht+R)*/
Matrix error_cov_post; /* posteriori error estimate covariance matrix (P(k)):
P(k)=(I-K(k)*H)*P'(k) */
Matrix temp1; /* temporary matrices */
Matrix temp2;
Matrix temp3;
Matrix temp4;
Matrix temp5;
public KalmanFilter()
{
MP = 1;
DP = 2;
CP = 0;
state_pre = new Matrix(DP, 1);
state_pre.Zero();
state_post = new Matrix(DP, 1);
state_post.Zero();
transition_matrix = new Matrix(DP, DP);
transition_matrix.SetIdentity(1.0);
transition_matrix[0, 1] = 1;
process_noise_cov = new Matrix(DP, DP);
process_noise_cov.SetIdentity(1.0);
measurement_matrix = new Matrix(MP, DP);
measurement_matrix.SetIdentity(1.0);
measurement_noise_cov = new Matrix(MP, MP);
measurement_noise_cov.SetIdentity(1.0);
error_cov_pre = new Matrix(DP, DP);
error_cov_post = new Matrix(DP, DP);
error_cov_post.SetIdentity(1);
gain = new Matrix(DP, MP);
if (CP > 0)
{
control_matrix = new Matrix(DP, CP);
control_matrix.Zero();
}
//
temp1 = new Matrix(DP, DP);
temp2 = new Matrix(MP, DP);
temp3 = new Matrix(MP, MP);
temp4 = new Matrix(MP, DP);
temp5 = new Matrix(MP, 1);
}
public Matrix Predict()
{
state_pre = transition_matrix.Multiply(state_post);
//if (CP>0)
//{
// control_matrix
//}
temp1 = transition_matrix.Multiply(error_cov_post);
Matrix at = transition_matrix.Transpose();
error_cov_pre = temp1.Multiply(at).Add(process_noise_cov);
Matrix result = new Matrix(state_pre);
return result;
}
public Matrix Correct(Matrix measurement)
{
temp2 = measurement_matrix.Multiply(error_cov_pre);
Matrix ht = measurement_matrix.Transpose();
temp3 = temp2.Multiply(ht).Add(measurement_noise_cov);
temp3.InvertSsgj();
temp4 = temp3.Multiply(temp2);
gain = temp4.Transpose();
temp5 = measurement.Subtract(measurement_matrix.Multiply(state_pre));
state_post = gain.Multiply(temp5).Add(state_pre);
error_cov_post = error_cov_pre.Subtract(gain.Multiply(temp2));
Matrix result = new Matrix(state_post);
return result;
}
public Matrix AutoPredict(Matrix measurement)
{
Matrix result = Predict();
Correct(measurement);
return result;
}
}
#endregion
public KalmanFacade(int valueItem)
{
if (valueItem<=0)
{
throw new Exception("not enough value items!");
}
kmfilter = new KalmanFilter[valueItem];
Random rand = new Random(1001);
for (int i = 0; i < valueItem; i++ )
{
kmfilter[i] = new KalmanFilter();
kmfilter[i].state_post[0, 0] = rand.Next(10);
kmfilter[i].state_post[1, 0] = rand.Next(10);
//
kmfilter[i].process_noise_cov.SetIdentity(1e-5);
kmfilter[i].measurement_noise_cov.SetIdentity(1e-1);
}
}
private KalmanFilter[] kmfilter = null;
public bool GetValue(double[] inValue, ref double[] outValue)
{
if (inValue.Length != kmfilter.Length || outValue.Length != kmfilter.Length)
{
return false;
}
Matrix[] measures = new Matrix[kmfilter.Length];
for (int i = 0; i < kmfilter.Length; i++ )
{
measures[i] = new Matrix();
measures[i][0, 0] = inValue[i];
outValue[i] = kmfilter[i].AutoPredict(measures[i])[0, 0];
}
return true;
}
}
}
//==========test=============
SimTransfer.KalmanFacade kalman = new SimTransfer.KalmanFacade(1);
Random rand = new Random(1001);
System.IO.StreamWriter dataFile = new System.IO.StreamWriter("D:\\test.csv");
for (int x = 0; x < 2000; x++ )
{
double y = 100 * Math.Sin((2.0 * Math.PI / (float)200) * x);
double noise = 20 * Math.Sin((40.0 * Math.PI / (float)200) * x) + 40 * (rand.NextDouble() - 0.5);
double[] z_k = new double[1];
z_k[0] = y + noise;
double[] y_k = new double[1];
kalman.GetValue(z_k, ref y_k);
dataFile.WriteLine(y.ToString() + "," + z_k[0].ToString() + "," + y_k[0].ToString());
}
dataFile.Close();
MessageBox.Show("OK!");
원본 코드 는 매우 상세 하지만 주석 이 비교적 적 습 니 다. 보아하니 나 는 프로그램 을 다시 번역 해 야 할 것 같 습 니 다!
요 이틀 동안 주석 을 다시 써 라!!!
또 하 나 는 Matrix 의 라 이브 러 리 다.
이 내용에 흥미가 있습니까?
현재 기사가 여러분의 문제를 해결하지 못하는 경우 AI 엔진은 머신러닝 분석(스마트 모델이 방금 만들어져 부정확한 경우가 있을 수 있음)을 통해 가장 유사한 기사를 추천합니다:
freebsd 하드디스크 사용 현황 과 폴 더 크기 보기월요일 아침 에 출근 했 는데 통계 데이터 의 셸 스 크 립 트 에 문제 가 생 겼 어 요.bug 를 찾 아 보 니 디스크 공간 이 부족 해서 데이터 가 생 성 되 지 않 았 습 니 다. 디 렉 터 리 의 사용 상황...
텍스트를 자유롭게 공유하거나 복사할 수 있습니다.하지만 이 문서의 URL은 참조 URL로 남겨 두십시오.
CC BY-SA 2.5, CC BY-SA 3.0 및 CC BY-SA 4.0에 따라 라이센스가 부여됩니다.