Business Analytics II Summary
Regression Analysis
Linear Regression
Regression Assumptions
- No Multicollinearity 
 
- Variance Inflation Factor (VIF) < 10 
 
- Homoskedasticity 
 
- Linearity : Residual Distribution 
 
- Breusch-Pagan Test : if p-value > 0.05, samples have homoskedasticity. 
 
- Correction: 
sm.OLS(y, x).fit(cov_type="HC3")  
- Normality of Error 
 
- QQ Plot 
 
- Normality Tests: if p-value > 0.05, samples are normally distributed.
(Kolmogorov-Smirnov, Shapiro-Wilk, Jarque-Bera etc.)  
Non-Linear Regression
- Logistic Regression 
 
- Probit Regression 
 
Machine Learning
Decision Tree
Confusion Matrix
sm.OLS(y, x).fit(cov_type="HC3") (Kolmogorov-Smirnov, Shapiro-Wilk, Jarque-Bera etc.)
Decision Tree
Confusion Matrix
| Predicted (y=1) | Predicted (y=0) | |
|---|---|---|
| True (y=1) | True Positive | False Negative  (Type II Error)  | 
| False (y=0) | False Positive  (Type I Error)  | True Negative | 
- Accuracy  = (TP + TN) / Total
- Precision = TP / (TP + FP)
- Recall    = TP / (TP + FN)
- F1 Score  = 2 (Precision x Recall) / (Precision + Recall)
Random Forest
- Ensemble learning method: a multitude of decision trees
 
- Data Preprocessing (Encoding, Categorizing, Normalizing, Scaling)
 - Balancing Dataset (Up/Down Sampling)
 - Defining Variables (Dependent/Independent)
 - Modeling (Supervised Learning) & Cross Validation
 - Evaluation (Accuracy Scores, Feature Importances)
 
Neural Networks
MLPClassifier(activation='relu', hidden_layer_sizes=10, max_iter=100)
Support Vector Machine
- Linear SVM
SVC(kernel='linear') - Non-linear SVM
 
- Kernel: Polynomial(
'poly'), Gaussian: Radial Basis Fuction('rbf'), Sigmoid('sigmoid') 
Naive Bayes
GaussianNB()
K-Nearest Neighbor
KNeighborsClassifier(n_neighbors=10)
Author And Source
이 문제에 관하여(Business Analytics II Summary), 우리는 이곳에서 더 많은 자료를 발견하고 링크를 클릭하여 보았다 https://velog.io/@yewonkim/Business-Analytics-II-Basics-Summary저자 귀속: 원작자 정보가 원작자 URL에 포함되어 있으며 저작권은 원작자 소유입니다.
                                
                                
                                
                                
                                
                                우수한 개발자 콘텐츠 발견에 전념
                                (Collection and Share based on the CC Protocol.)