역대 최고의 영화
이 글에서는 인기 영화 등급 웹사이트인 Rotten Tomatoes에서 데이터를 스크랩하는 방법을 보여주고 약 100편의 영화에 대한 단어 구름을 만들 것입니다.
Rotten Tomatoes에는 비평가 점수와 비평가 리뷰 수를 기반으로 순위가 매겨지는 역대 최고의 영화 100개 목록이 있습니다. 하지만 이 지표는 비평가들만이 영화를 평가할 수 있기 때문에 약간의 결함이 있습니다. 평론가 점수와 관객 점수를 비교할 수 있다면 굉장하지 않을까요?
필요한 라이브러리 가져오기
# import all the necessary libaries
from bs4 import BeautifulSoup
import os
import requests
import glob
import unicodedata
import pandas as pd
다음으로 here을 클릭하여 역대 최고의 영화 100편을 다운로드합니다.

썩은 토마토 사이트 웹 스크랩

여기서는 원래 데이터 세트에 포함되지 않았기 때문에 청중 점수를 얻기 위해 썩은 토마토 사이트를 웹 스크래핑합니다.
웹 스크래핑의 취약성으로 인해 영화 웹 페이지를 다운로드하여 이 파일에 컴파일했습니다zipped folder.. 이제 문제 없이 재생할 수 있습니다. 이 폴더에는 로컬 시스템 브라우저나 코드 편집기에서 볼 수 있는 역대 최고의 영화 100편에 대한 웹 페이지가 포함되어 있습니다.
# Webscraping
# Webscrape rotten tomatoes site to get the movie title,
# audience score and number of audience ratings
# List of dictionaries to build file by file and later convert to a DataFrame
df2_list = []
# folder where the movie webpages are saved
folder = 'C:\\Users\\user\\Desktop\\UDACITY\\Greatest_Movies\\rt_html'
for movie_html in os.listdir(folder):
with open(os.path.join(folder, movie_html)) as file:
soup = BeautifulSoup(file,"lxml")
title = soup.find('title').text
title = unicodedata.normalize("NFKD",title)
audience_score = soup.find(name='div',class_='meter-value').find(name='span',class_='superPageFontColor').text[:-1]
num_audience_ratings = soup.find('div', class_='audience-info hidden-xs superPageFontColor')
num_audience_ratings = num_audience_ratings.find_all('div')[1].contents[2].strip().replace(',', '')
# Append to list of dictionaries
df2_list.append({'title': title,
'audience_score': int(audience_score),
'number_of_audience_ratings': int(num_audience_ratings)})
# convert list of dictionaries to dataframe
df2 = pd.DataFrame(df2_list, columns = ['title', 'audience_score', 'number_of_audience_ratings'])

두 데이터 프레임을 함께 병합
이제 두 데이터 프레임의 내부 조인을 수행하지만 이렇게 하려면 두 데이터 프레임에 공통 열(이 경우 제목 열)이 있어야 합니다. 따라서 제목 열을 약간 정리해야 합니다. df1과 동일한 형식을 갖도록 df2의 제목 열을 다시 포맷한 다음 모든 후행 공백을 제거합니다.



Tableau를 사용한 시각화
이제 시각화를 만드는 데 필요한 모든 것이 있습니다. 이를 위해 tableau를 사용합니다.

Link to Tableau visualization
영화 리뷰를 위한 WordCloud 만들기
워드클라우드를 만들기 위해서는 각 영화에 대한 리뷰가 필요합니다. Robert Ebert의 리뷰(인기 미국 영화 평론가)를 텍스트 파일로 다운로드한 다음 각 리뷰를 반복하여 영화 제목과 리뷰를 가져오고 마지막으로 그의 리뷰를 데이터 프레임에 결합합니다.
folder_name = 'ebert_reviews'
if not os.path.exists(folder_name):
os.makedirs(folder_name) # creates the directory ebert_reviews if it doesn't exist
ebert_review_urls = ['https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad9900_1-the-wizard-of-oz-1939-film/1-the-wizard-of-oz-1939-film.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad9901_2-citizen-kane/2-citizen-kane.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad9901_3-the-third-man/3-the-third-man.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad9902_4-get-out-film/4-get-out-film.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad9902_5-mad-max-fury-road/5-mad-max-fury-road.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad9902_6-the-cabinet-of-dr.-caligari/6-the-cabinet-of-dr.-caligari.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad9903_7-all-about-eve/7-all-about-eve.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad9903_8-inside-out-2015-film/8-inside-out-2015-film.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad9903_9-the-godfather/9-the-godfather.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad9904_10-metropolis-1927-film/10-metropolis-1927-film.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad9904_11-e.t.-the-extra-terrestrial/11-e.t.-the-extra-terrestrial.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad9904_12-modern-times-film/12-modern-times-film.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad9904_14-singin-in-the-rain/14-singin-in-the-rain.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad9905_15-boyhood-film/15-boyhood-film.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad9905_16-casablanca-film/16-casablanca-film.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad9905_17-moonlight-2016-film/17-moonlight-2016-film.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad9906_18-psycho-1960-film/18-psycho-1960-film.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad9906_19-laura-1944-film/19-laura-1944-film.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad9906_20-nosferatu/20-nosferatu.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad9907_21-snow-white-and-the-seven-dwarfs-1937-film/21-snow-white-and-the-seven-dwarfs-1937-film.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad9907_22-a-hard-day27s-night-film/22-a-hard-day27s-night-film.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad9907_23-la-grande-illusion/23-la-grande-illusion.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad9908_25-the-battle-of-algiers/25-the-battle-of-algiers.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad9908_26-dunkirk-2017-film/26-dunkirk-2017-film.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad9908_27-the-maltese-falcon-1941-film/27-the-maltese-falcon-1941-film.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad9909_29-12-years-a-slave-film/29-12-years-a-slave-film.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad9909_30-gravity-2013-film/30-gravity-2013-film.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad9909_31-sunset-boulevard-film/31-sunset-boulevard-film.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad990a_32-king-kong-1933-film/32-king-kong-1933-film.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad990a_33-spotlight-film/33-spotlight-film.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad990a_34-the-adventures-of-robin-hood/34-the-adventures-of-robin-hood.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad990b_35-rashomon/35-rashomon.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad990b_36-rear-window/36-rear-window.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad990b_37-selma-film/37-selma-film.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad990c_38-taxi-driver/38-taxi-driver.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad990c_39-toy-story-3/39-toy-story-3.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad990c_40-argo-2012-film/40-argo-2012-film.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad990d_41-toy-story-2/41-toy-story-2.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad990d_42-the-big-sick/42-the-big-sick.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad990d_43-bride-of-frankenstein/43-bride-of-frankenstein.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad990d_44-zootopia/44-zootopia.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad990e_45-m-1931-film/45-m-1931-film.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad990e_46-wonder-woman-2017-film/46-wonder-woman-2017-film.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad990e_48-alien-film/48-alien-film.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad990f_49-bicycle-thieves/49-bicycle-thieves.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad990f_50-seven-samurai/50-seven-samurai.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad990f_51-the-treasure-of-the-sierra-madre-film/51-the-treasure-of-the-sierra-madre-film.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad9910_52-up-2009-film/52-up-2009-film.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad9910_53-12-angry-men-1957-film/53-12-angry-men-1957-film.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad9910_54-the-400-blows/54-the-400-blows.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad9911_55-logan-film/55-logan-film.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad9911_57-army-of-shadows/57-army-of-shadows.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad9912_58-arrival-film/58-arrival-film.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad9912_59-baby-driver/59-baby-driver.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad9913_60-a-streetcar-named-desire-1951-film/60-a-streetcar-named-desire-1951-film.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad9913_61-the-night-of-the-hunter-film/61-the-night-of-the-hunter-film.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad9913_62-star-wars-the-force-awakens/62-star-wars-the-force-awakens.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad9913_63-manchester-by-the-sea-film/63-manchester-by-the-sea-film.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad9914_64-dr.-strangelove/64-dr.-strangelove.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad9914_66-vertigo-film/66-vertigo-film.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad9914_67-the-dark-knight-film/67-the-dark-knight-film.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad9915_68-touch-of-evil/68-touch-of-evil.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad9915_69-the-babadook/69-the-babadook.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad9915_72-rosemary27s-baby-film/72-rosemary27s-baby-film.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad9916_73-finding-nemo/73-finding-nemo.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad9916_74-brooklyn-film/74-brooklyn-film.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad9917_75-the-wrestler-2008-film/75-the-wrestler-2008-film.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad9917_77-l.a.-confidential-film/77-l.a.-confidential-film.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad9918_78-gone-with-the-wind-film/78-gone-with-the-wind-film.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad9918_79-the-good-the-bad-and-the-ugly/79-the-good-the-bad-and-the-ugly.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad9918_80-skyfall/80-skyfall.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad9919_82-tokyo-story/82-tokyo-story.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad9919_83-hell-or-high-water-film/83-hell-or-high-water-film.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad9919_84-pinocchio-1940-film/84-pinocchio-1940-film.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad9919_85-the-jungle-book-2016-film/85-the-jungle-book-2016-film.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad991a_86-la-la-land-film/86-la-la-land-film.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad991b_87-star-trek-film/87-star-trek-film.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad991b_89-apocalypse-now/89-apocalypse-now.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad991c_90-on-the-waterfront/90-on-the-waterfront.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad991c_91-the-wages-of-fear/91-the-wages-of-fear.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad991c_92-the-last-picture-show/92-the-last-picture-show.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad991d_93-harry-potter-and-the-deathly-hallows-part-2/93-harry-potter-and-the-deathly-hallows-part-2.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad991d_94-the-grapes-of-wrath-film/94-the-grapes-of-wrath-film.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad991d_96-man-on-wire/96-man-on-wire.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad991e_97-jaws-film/97-jaws-film.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad991e_98-toy-story/98-toy-story.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad991e_99-the-godfather-part-ii/99-the-godfather-part-ii.txt',
'https://d17h27t6h515a5.cloudfront.net/topher/2017/September/59ad991e_100-battleship-potemkin/100-battleship-potemkin.txt']


Robert Ebert의 리뷰와 함께 Left 조인
df = new_df.merge(df3,how='left',on='title')

일부 영화는 아직 Robert가 검토하지 않았습니다.

이제 워드 클라우드를 만드는 작업을 진행할 수 있습니다. 먼저 단일 영화에 대한 코드를 작성하여 영화 100개로 크기를 조정하기 전에 완벽하게 작동하는지 확인합니다.

아래는 모든 100개의 영화에 대해 재생산하는 코드입니다.
# Generate wordcloud for all movies
col = 0
for review in df["review_text"]:
wc = WordCloud( background_color = "white",
width = 3000, height = 2000).generate(df["review_text"][col]) # create word cloud for each movie
wc.to_file(wordcloud_folder+"/"+str(df.ranking[col])+'_'+df.title[col]+'.png') # save the word cloud
col+=1
if col > 100:
break
결론
이제 Tableau 비주얼리제이션의 사분면과 워드 클라우드의 리뷰를 기반으로 어떤 영화를 볼 것인지 더 잘 이해할 수 있습니다. 주말을 즐기세요!!!. 소스 코드에 대한 내Github 저장소에 링크하십시오.
Reference
이 문제에 관하여(역대 최고의 영화), 우리는 이곳에서 더 많은 자료를 발견하고 링크를 클릭하여 보았다 https://dev.to/chizzyedoka/greatest-movies-of-all-time-lha텍스트를 자유롭게 공유하거나 복사할 수 있습니다.하지만 이 문서의 URL은 참조 URL로 남겨 두십시오.
우수한 개발자 콘텐츠 발견에 전념
(Collection and Share based on the CC Protocol.)