Azure ML 실험 및 실행

3187 단어 azuremlazure

An experiment is a grouping of many runs from a specified script. It always belongs to a workspace. When we submit a run, we provide an experiment name. Information for the run is stored under that experiment. If the name doesn't exist when we submit an experiment, a new experiment is automatically created.





A run is a single execution of a training script. An experiment will typically contain multiple runs.





실행에는 다음과 같은 특성이 있습니다.
  • 지표
  • 어린이 달리기
  • 출력
  • 통나무



  • 실행에는 연결된 측정항목 및 매개변수도 있습니다.



    실행에는 연결된 출력도 있습니다.



    암호



    작업 공간 만들기




    from azureml.core import Workspace
    from azureml.core import Workspace
    from azureml.core.authentication import InteractiveLoginAuthentication
    
    sid = '<your-subscription-id>'
    forced_interactive_auth = InteractiveLoginAuthentication(tenant_id="<your-tenant-id>", force=True)
    
    ws = Workspace.create(name='azureml_workspace',
                subscription_id= sid, 
                resource_group='rgazureml',
                create_resource_group = True,
                location='centralus'
                )
    


    실험 및 실행 만들기




    from azureml.core import Experiment
    
    # create an experiment
    exp = Experiment(workspace=ws, name='trial_exp')
    
    # start a run
    run = exp.start_logging()
    
    # log a number
    run.log('trial', 30)
    
    # log a list (Fibonacci numbers)
    run.log_list('my list', [1, 1, 2, 3, 5, 8, 13, 21, 34, 55]) 
    
    # finish the run
    run.complete()
    
    print('Finished logging')
    


    다른 실행 만들기




    # start a run
    run = exp.start_logging()
    
    # log a number
    run.log('trial2', 35)
    
    # log a list 
    run.log_list('my list2', [1, 1, 2, 2, 5, 5, 13, 13, 13, 13]) 
    
    # finish the run
    run.complete()
    


    참조
  • Azure Machine Learning documentation
  • 좋은 웹페이지 즐겨찾기