Azure ML 실험 및 실행
An experiment is a grouping of many runs from a specified script. It always belongs to a workspace. When we submit a run, we provide an experiment name. Information for the run is stored under that experiment. If the name doesn't exist when we submit an experiment, a new experiment is automatically created.
A run is a single execution of a training script. An experiment will typically contain multiple runs.
실행에는 다음과 같은 특성이 있습니다.
실행에는 연결된 측정항목 및 매개변수도 있습니다.
실행에는 연결된 출력도 있습니다.
암호
작업 공간 만들기
from azureml.core import Workspace
from azureml.core import Workspace
from azureml.core.authentication import InteractiveLoginAuthentication
sid = '<your-subscription-id>'
forced_interactive_auth = InteractiveLoginAuthentication(tenant_id="<your-tenant-id>", force=True)
ws = Workspace.create(name='azureml_workspace',
subscription_id= sid,
resource_group='rgazureml',
create_resource_group = True,
location='centralus'
)
실험 및 실행 만들기
from azureml.core import Experiment
# create an experiment
exp = Experiment(workspace=ws, name='trial_exp')
# start a run
run = exp.start_logging()
# log a number
run.log('trial', 30)
# log a list (Fibonacci numbers)
run.log_list('my list', [1, 1, 2, 3, 5, 8, 13, 21, 34, 55])
# finish the run
run.complete()
print('Finished logging')
다른 실행 만들기
# start a run
run = exp.start_logging()
# log a number
run.log('trial2', 35)
# log a list
run.log_list('my list2', [1, 1, 2, 2, 5, 5, 13, 13, 13, 13])
# finish the run
run.complete()
참조
from azureml.core import Workspace
from azureml.core import Workspace
from azureml.core.authentication import InteractiveLoginAuthentication
sid = '<your-subscription-id>'
forced_interactive_auth = InteractiveLoginAuthentication(tenant_id="<your-tenant-id>", force=True)
ws = Workspace.create(name='azureml_workspace',
subscription_id= sid,
resource_group='rgazureml',
create_resource_group = True,
location='centralus'
)
from azureml.core import Experiment
# create an experiment
exp = Experiment(workspace=ws, name='trial_exp')
# start a run
run = exp.start_logging()
# log a number
run.log('trial', 30)
# log a list (Fibonacci numbers)
run.log_list('my list', [1, 1, 2, 3, 5, 8, 13, 21, 34, 55])
# finish the run
run.complete()
print('Finished logging')
# start a run
run = exp.start_logging()
# log a number
run.log('trial2', 35)
# log a list
run.log_list('my list2', [1, 1, 2, 2, 5, 5, 13, 13, 13, 13])
# finish the run
run.complete()
Reference
이 문제에 관하여(Azure ML 실험 및 실행), 우리는 이곳에서 더 많은 자료를 발견하고 링크를 클릭하여 보았다 https://dev.to/ambarishg/azure-experiments-59b6텍스트를 자유롭게 공유하거나 복사할 수 있습니다.하지만 이 문서의 URL은 참조 URL로 남겨 두십시오.
우수한 개발자 콘텐츠 발견에 전념 (Collection and Share based on the CC Protocol.)