android Rect

25029 단어 ----드로잉2.Android
Rect 클래스에는 4개의 int형 구성원 변수가 있는데, 각각left,tope,right,bottom이다
하나의 직사각형의 왼쪽 위 좌표의 X, Y축 좌표값, 오른쪽 아래 좌표의 X, Y축 좌표값으로 이해할 수 있다
이 네 개의 값이 확정되면 명확하게 혹은 직사각형 범위를 대표할 수 있다.
이 클래스에는 다음과 같은 일반적인 방법이 있습니다.
                1.이 직사각형의 너비, 중점 좌표를 얻기 위해
                2.다른 점, 사각형과의 위치 관계(동일한지, 교차한지, 포함한지) 판단하기
                3.직사각형 두 좌표에 대한 설정 작업(좌표점 변경, 신축, 내축, 위치 이동, 축소)
메서드
역할
boolean equals(Object o)
두 직사각형의 두 점 좌표가 같습니까?
int hashCode()
 
toString()
두 좌표점 정보가 있는 문자열 생성하기
boolean isEmpty()
직사각형 정보의 유효성을 판단하기 위해 오른쪽 좌표점의 x축과 Y축 좌표는 왼쪽보다 크다
int width()
사각형의 너비 얻기
int height()
직사각형 높이 얻기
int centerX()
직사각형의 X축 중점 좌표 얻기
int centerY()
직사각형의 Y축 중점 좌표 얻기
float exactCenterX()
직사각형의 X축 중점 좌표 얻기(float)
float exactCenterY()
직사각형의 Y축 중점 좌표 가져오기(float)
void setEmpty()
두 점 좌표값을 0으로 설정합니다.
void set(int left, int top, int right, int bottom)
두 점 좌표값을 구체적으로 설정합니다.
void set(Rect src)
두 점 좌표값을 src의 두 점 좌표값과 같이 설정합니다
void offset(int dx, int dy)
직사각형 x 축 오프셋 dx, y 축 오프셋dy
void offsetTo(int newLeft, int newTop)
직사각형의 왼쪽 x 좌표를 newLeft, y 좌표를 newTop으로 하고 너비는 변하지 않습니다
void inset(int dx, int dy)
두 점 좌표값 x축 방향 내축dx, y축 방향 내축dy(left+dx,right-dx,top+dy,bottom-dy)
void inset(Rect insets)
두 점 좌표값을 insets에 비해 축소
void inset(int left, int top, int right, int bottom)
두 점 좌표값을 두 점 좌표값과 비교하여 내축
boolean contains(int x, int y)
x, y가 대표하는 점이 직사각형 안에 있는지 판단하다
boolean contains(int left, int top, int right, int bottom)
두 점의 좌표값이 대표하는 점이 직사각형 안에 있는지 아닌지를 판단하다
boolean contains(Rect r)
r가 대표하는 직사각형이 직사각형 안에 있는지 아닌지를 판단하다
boolean intersect(int left, int top, int right, int bottom)
두 점 좌표 값이 대표하는 직사각형이 현재 직사각형과 교차하는지 판단하고 교차하면 현재 직사각형 좌표 값이 교차하는 범위가 된다
boolean setIntersect(Rect a, Rect b)
a, b 두 직사각형이 교차하는지 판단하고, 교차하면 현재 직사각형 좌표값을 교차하는 범위로 한다.
boolean intersects(int left, int top, int right, int bottom)
두 좌표 값이 대표하는 직사각형이 현재 직사각형과 교차하는지 판단하다
boolean intersects(Rect a, Rect b)
a, b 두 직사각형이 교차하는지 아닌지를 판단하다
union(int left, int top, int right, int bottom)
확장 사각형은 두 좌표 값이 대표하는 사각형을 사각형 안에 두게 한다
void union(Rect r)
확장 직사각형은 r가 대표하는 직사각형을 직사각형 안에 넣는다
union(int x, int y)
확장 사각형은 x, y가 대표하는 점을 사각형 안에
sort() 
정렬, 큰 좌표값을 오른쪽 좌표점 좌표값으로
void scale(float scale)
두 좌표 값을 모두 scale에 곱하기
           :
public final class Rect implements Parcelable {
    public int left;
    public int top;
    public int right;
    public int bottom;

    /**
     * A helper class for flattened rectange pattern recognition. A separate
     * class to avoid an initialization dependency on a regular expression
     * causing Rect to not be initializable with an ahead-of-time compilation
     * scheme.
     */
    private static final class UnflattenHelper {
        private static final Pattern FLATTENED_PATTERN = Pattern.compile(
            "(-?\\d+) (-?\\d+) (-?\\d+) (-?\\d+)");

        static Matcher getMatcher(String str) {
            return FLATTENED_PATTERN.matcher(str);
        }
    }

    /**
     * Create a new empty Rect. All coordinates are initialized to 0.
     */
    public Rect() {}

    /**
     * Create a new rectangle with the specified coordinates. Note: no range
     * checking is performed, so the caller must ensure that left <= right and
     * top <= bottom.
     *
     * @param left   The X coordinate of the left side of the rectangle
     * @param top    The Y coordinate of the top of the rectangle
     * @param right  The X coordinate of the right side of the rectangle
     * @param bottom The Y coordinate of the bottom of the rectangle
     */
    public Rect(int left, int top, int right, int bottom) {
        this.left = left;
        this.top = top;
        this.right = right;
        this.bottom = bottom;
    }

    /**
     * Create a new rectangle, initialized with the values in the specified
     * rectangle (which is left unmodified).
     *
     * @param r The rectangle whose coordinates are copied into the new
     *          rectangle.
     */
    public Rect(Rect r) {
        if (r == null) {
            left = top = right = bottom = 0;
        } else {
            left = r.left;
            top = r.top;
            right = r.right;
            bottom = r.bottom;
        }
    }

    @Override
    public boolean equals(Object o) {
        if (this == o) return true;
        if (o == null || getClass() != o.getClass()) return false;

        Rect r = (Rect) o;
        return left == r.left && top == r.top && right == r.right && bottom == r.bottom;
    }

    @Override
    public int hashCode() {
        int result = left;
        result = 31 * result + top;
        result = 31 * result + right;
        result = 31 * result + bottom;
        return result;
    }

    @Override
    public String toString() {
        StringBuilder sb = new StringBuilder(32);
        sb.append("Rect("); sb.append(left); sb.append(", ");
        sb.append(top); sb.append(" - "); sb.append(right);
        sb.append(", "); sb.append(bottom); sb.append(")");
        return sb.toString();
    }

    /**
     * Return a string representation of the rectangle in a compact form.
     */
    public String toShortString() {
        return toShortString(new StringBuilder(32));
    }
    
    /**
     * Return a string representation of the rectangle in a compact form.
     * @hide
     */
    public String toShortString(StringBuilder sb) {
        sb.setLength(0);
        sb.append('['); sb.append(left); sb.append(',');
        sb.append(top); sb.append("]["); sb.append(right);
        sb.append(','); sb.append(bottom); sb.append(']');
        return sb.toString();
    }

    /**
     * Return a string representation of the rectangle in a well-defined format.
     *
     * 

You can later recover the Rect from this string through * {@link #unflattenFromString(String)}. * * @return Returns a new String of the form "left top right bottom" */ public String flattenToString() { StringBuilder sb = new StringBuilder(32); // WARNING: Do not change the format of this string, it must be // preserved because Rects are saved in this flattened format. sb.append(left); sb.append(' '); sb.append(top); sb.append(' '); sb.append(right); sb.append(' '); sb.append(bottom); return sb.toString(); } /** * Returns a Rect from a string of the form returned by {@link #flattenToString}, * or null if the string is not of that form. */ public static Rect unflattenFromString(String str) { Matcher matcher = UnflattenHelper.getMatcher(str); if (!matcher.matches()) { return null; } return new Rect(Integer.parseInt(matcher.group(1)), Integer.parseInt(matcher.group(2)), Integer.parseInt(matcher.group(3)), Integer.parseInt(matcher.group(4))); } /** * Print short representation to given writer. * @hide */ public void printShortString(PrintWriter pw) { pw.print('['); pw.print(left); pw.print(','); pw.print(top); pw.print("]["); pw.print(right); pw.print(','); pw.print(bottom); pw.print(']'); } /** * Returns true if the rectangle is empty (left >= right or top >= bottom) */ public final boolean isEmpty() { return left >= right || top >= bottom; } /** * @return the rectangle's width. This does not check for a valid rectangle * (i.e. left <= right) so the result may be negative. */ public final int width() { return right - left; } /** * @return the rectangle's height. This does not check for a valid rectangle * (i.e. top <= bottom) so the result may be negative. */ public final int height() { return bottom - top; } /** * @return the horizontal center of the rectangle. If the computed value * is fractional, this method returns the largest integer that is * less than the computed value. */ public final int centerX() { return (left + right) >> 1; } /** * @return the vertical center of the rectangle. If the computed value * is fractional, this method returns the largest integer that is * less than the computed value. */ public final int centerY() { return (top + bottom) >> 1; } /** * @return the exact horizontal center of the rectangle as a float. */ public final float exactCenterX() { return (left + right) * 0.5f; } /** * @return the exact vertical center of the rectangle as a float. */ public final float exactCenterY() { return (top + bottom) * 0.5f; } /** * Set the rectangle to (0,0,0,0) */ public void setEmpty() { left = right = top = bottom = 0; } /** * Set the rectangle's coordinates to the specified values. Note: no range * checking is performed, so it is up to the caller to ensure that * left <= right and top <= bottom. * * @param left The X coordinate of the left side of the rectangle * @param top The Y coordinate of the top of the rectangle * @param right The X coordinate of the right side of the rectangle * @param bottom The Y coordinate of the bottom of the rectangle */ public void set(int left, int top, int right, int bottom) { this.left = left; this.top = top; this.right = right; this.bottom = bottom; } /** * Copy the coordinates from src into this rectangle. * * @param src The rectangle whose coordinates are copied into this * rectangle. */ public void set(Rect src) { this.left = src.left; this.top = src.top; this.right = src.right; this.bottom = src.bottom; } /** * Offset the rectangle by adding dx to its left and right coordinates, and * adding dy to its top and bottom coordinates. * * @param dx The amount to add to the rectangle's left and right coordinates * @param dy The amount to add to the rectangle's top and bottom coordinates */ public void offset(int dx, int dy) { left += dx; top += dy; right += dx; bottom += dy; } /** * Offset the rectangle to a specific (left, top) position, * keeping its width and height the same. * * @param newLeft The new "left" coordinate for the rectangle * @param newTop The new "top" coordinate for the rectangle */ public void offsetTo(int newLeft, int newTop) { right += newLeft - left; bottom += newTop - top; left = newLeft; top = newTop; } /** * Inset the rectangle by (dx,dy). If dx is positive, then the sides are * moved inwards, making the rectangle narrower. If dx is negative, then the * sides are moved outwards, making the rectangle wider. The same holds true * for dy and the top and bottom. * * @param dx The amount to add(subtract) from the rectangle's left(right) * @param dy The amount to add(subtract) from the rectangle's top(bottom) */ public void inset(int dx, int dy) { left += dx; top += dy; right -= dx; bottom -= dy; } /** * Insets the rectangle on all sides specified by the dimensions of the {@code insets} * rectangle. * @hide * @param insets The rectangle specifying the insets on all side. */ public void inset(Rect insets) { left += insets.left; top += insets.top; right -= insets.right; bottom -= insets.bottom; } /** * Insets the rectangle on all sides specified by the insets. * @hide * @param left The amount to add from the rectangle's left * @param top The amount to add from the rectangle's top * @param right The amount to subtract from the rectangle's right * @param bottom The amount to subtract from the rectangle's bottom */ public void inset(int left, int top, int right, int bottom) { this.left += left; this.top += top; this.right -= right; this.bottom -= bottom; } /** * Returns true if (x,y) is inside the rectangle. The left and top are * considered to be inside, while the right and bottom are not. This means * that for a x,y to be contained: left <= x < right and top <= y < bottom. * An empty rectangle never contains any point. * * @param x The X coordinate of the point being tested for containment * @param y The Y coordinate of the point being tested for containment * @return true iff (x,y) are contained by the rectangle, where containment * means left <= x < right and top <= y < bottom */ public boolean contains(int x, int y) { return left < right && top < bottom // check for empty first && x >= left && x < right && y >= top && y < bottom; } /** * Returns true iff the 4 specified sides of a rectangle are inside or equal * to this rectangle. i.e. is this rectangle a superset of the specified * rectangle. An empty rectangle never contains another rectangle. * * @param left The left side of the rectangle being tested for containment * @param top The top of the rectangle being tested for containment * @param right The right side of the rectangle being tested for containment * @param bottom The bottom of the rectangle being tested for containment * @return true iff the the 4 specified sides of a rectangle are inside or * equal to this rectangle */ public boolean contains(int left, int top, int right, int bottom) { // check for empty first return this.left < this.right && this.top < this.bottom // now check for containment && this.left <= left && this.top <= top && this.right >= right && this.bottom >= bottom; } /** * Returns true iff the specified rectangle r is inside or equal to this * rectangle. An empty rectangle never contains another rectangle. * * @param r The rectangle being tested for containment. * @return true iff the specified rectangle r is inside or equal to this * rectangle */ public boolean contains(Rect r) { // check for empty first return this.left < this.right && this.top < this.bottom // now check for containment && left <= r.left && top <= r.top && right >= r.right && bottom >= r.bottom; } /** * If the rectangle specified by left,top,right,bottom intersects this * rectangle, return true and set this rectangle to that intersection, * otherwise return false and do not change this rectangle. No check is * performed to see if either rectangle is empty. Note: To just test for * intersection, use {@link #intersects(Rect, Rect)}. * * @param left The left side of the rectangle being intersected with this * rectangle * @param top The top of the rectangle being intersected with this rectangle * @param right The right side of the rectangle being intersected with this * rectangle. * @param bottom The bottom of the rectangle being intersected with this * rectangle. * @return true if the specified rectangle and this rectangle intersect * (and this rectangle is then set to that intersection) else * return false and do not change this rectangle. */ @CheckResult public boolean intersect(int left, int top, int right, int bottom) { if (this.left < right && left < this.right && this.top < bottom && top < this.bottom) { if (this.left < left) this.left = left; if (this.top < top) this.top = top; if (this.right > right) this.right = right; if (this.bottom > bottom) this.bottom = bottom; return true; } return false; } /** * If the specified rectangle intersects this rectangle, return true and set * this rectangle to that intersection, otherwise return false and do not * change this rectangle. No check is performed to see if either rectangle * is empty. To just test for intersection, use intersects() * * @param r The rectangle being intersected with this rectangle. * @return true if the specified rectangle and this rectangle intersect * (and this rectangle is then set to that intersection) else * return false and do not change this rectangle. */ @CheckResult public boolean intersect(Rect r) { return intersect(r.left, r.top, r.right, r.bottom); } /** * If rectangles a and b intersect, return true and set this rectangle to * that intersection, otherwise return false and do not change this * rectangle. No check is performed to see if either rectangle is empty. * To just test for intersection, use intersects() * * @param a The first rectangle being intersected with * @param b The second rectangle being intersected with * @return true iff the two specified rectangles intersect. If they do, set * this rectangle to that intersection. If they do not, return * false and do not change this rectangle. */ @CheckResult public boolean setIntersect(Rect a, Rect b) { if (a.left < b.right && b.left < a.right && a.top < b.bottom && b.top < a.bottom) { left = Math.max(a.left, b.left); top = Math.max(a.top, b.top); right = Math.min(a.right, b.right); bottom = Math.min(a.bottom, b.bottom); return true; } return false; } /** * Returns true if this rectangle intersects the specified rectangle. * In no event is this rectangle modified. No check is performed to see * if either rectangle is empty. To record the intersection, use intersect() * or setIntersect(). * * @param left The left side of the rectangle being tested for intersection * @param top The top of the rectangle being tested for intersection * @param right The right side of the rectangle being tested for * intersection * @param bottom The bottom of the rectangle being tested for intersection * @return true iff the specified rectangle intersects this rectangle. In * no event is this rectangle modified. */ public boolean intersects(int left, int top, int right, int bottom) { return this.left < right && left < this.right && this.top < bottom && top < this.bottom; } /** * Returns true iff the two specified rectangles intersect. In no event are * either of the rectangles modified. To record the intersection, * use {@link #intersect(Rect)} or {@link #setIntersect(Rect, Rect)}. * * @param a The first rectangle being tested for intersection * @param b The second rectangle being tested for intersection * @return true iff the two specified rectangles intersect. In no event are * either of the rectangles modified. */ public static boolean intersects(Rect a, Rect b) { return a.left < b.right && b.left < a.right && a.top < b.bottom && b.top < a.bottom; } /** * Update this Rect to enclose itself and the specified rectangle. If the * specified rectangle is empty, nothing is done. If this rectangle is empty * it is set to the specified rectangle. * * @param left The left edge being unioned with this rectangle * @param top The top edge being unioned with this rectangle * @param right The right edge being unioned with this rectangle * @param bottom The bottom edge being unioned with this rectangle */ public void union(int left, int top, int right, int bottom) { if ((left < right) && (top < bottom)) { if ((this.left < this.right) && (this.top < this.bottom)) { if (this.left > left) this.left = left; if (this.top > top) this.top = top; if (this.right < right) this.right = right; if (this.bottom < bottom) this.bottom = bottom; } else { this.left = left; this.top = top; this.right = right; this.bottom = bottom; } } } /** * Update this Rect to enclose itself and the specified rectangle. If the * specified rectangle is empty, nothing is done. If this rectangle is empty * it is set to the specified rectangle. * * @param r The rectangle being unioned with this rectangle */ public void union(Rect r) { union(r.left, r.top, r.right, r.bottom); } /** * Update this Rect to enclose itself and the [x,y] coordinate. There is no * check to see that this rectangle is non-empty. * * @param x The x coordinate of the point to add to the rectangle * @param y The y coordinate of the point to add to the rectangle */ public void union(int x, int y) { if (x < left) { left = x; } else if (x > right) { right = x; } if (y < top) { top = y; } else if (y > bottom) { bottom = y; } } /** * Swap top/bottom or left/right if there are flipped (i.e. left > right * and/or top > bottom). This can be called if * the edges are computed separately, and may have crossed over each other. * If the edges are already correct (i.e. left <= right and top <= bottom) * then nothing is done. */ public void sort() { if (left > right) { int temp = left; left = right; right = temp; } if (top > bottom) { int temp = top; top = bottom; bottom = temp; } } /** * Parcelable interface methods */ public int describeContents() { return 0; } /** * Write this rectangle to the specified parcel. To restore a rectangle from * a parcel, use readFromParcel() * @param out The parcel to write the rectangle's coordinates into */ public void writeToParcel(Parcel out, int flags) { out.writeInt(left); out.writeInt(top); out.writeInt(right); out.writeInt(bottom); } public static final Parcelable.Creator CREATOR = new Parcelable.Creator() { /** * Return a new rectangle from the data in the specified parcel. */ public Rect createFromParcel(Parcel in) { Rect r = new Rect(); r.readFromParcel(in); return r; } /** * Return an array of rectangles of the specified size. */ public Rect[] newArray(int size) { return new Rect[size]; } }; /** * Set the rectangle's coordinates from the data stored in the specified * parcel. To write a rectangle to a parcel, call writeToParcel(). * * @param in The parcel to read the rectangle's coordinates from */ public void readFromParcel(Parcel in) { left = in.readInt(); top = in.readInt(); right = in.readInt(); bottom = in.readInt(); } /** * Scales up the rect by the given scale. * @hide */ public void scale(float scale) { if (scale != 1.0f) { left = (int) (left * scale + 0.5f); top = (int) (top * scale + 0.5f); right = (int) (right * scale + 0.5f); bottom = (int) (bottom * scale + 0.5f); } } }

좋은 웹페이지 즐겨찾기