linux 내장 원본 코드의main 함수 분석

27380 단어 Linux 커널
        :

main        ,       ,  bootloader       main    C     ,  linux             main     。linux        ,       main。 bootloader       main?  main       ?



        ,        :

1、main   C     ,     ;            ,           !               ,              ,       "main"    ;                 ,  linux C      start_kernel();          C      。 main                ,            ,                。

2、         main   !            main  (               main   );             ,      ,                     !         main   !!                   ,        main        ,main                     !  linux                main。               。

3、linux                        Windows。Windows                            (      ),       。linux     。    bin             ,         。

/*
 *  linux/init/main.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  GK 2/5/95  -  Changed to support mounting root fs via NFS
 *  Added initrd & change_root: Werner Almesberger & Hans Lermen, Feb '96
 *  Moan early if gcc is old, avoiding bogus kernels - Paul Gortmaker, May '96
 *  Simplified starting of init:  Michael A. Griffith  
 * start_kernel->rest_init->kernel_init    init  pid=1
                          ->kthreadd           pid=x
                          ->pid=0, idle  
     rest_init ,   kernel_init  ,       init  ,     ,  
       idle  
 */

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 

#include 
#include 
#include 
#include 
#include 

#ifdef CONFIG_X86_LOCAL_APIC
#include 
#endif

static int kernel_init(void *);

extern void init_IRQ(void);
extern void fork_init(unsigned long);
extern void mca_init(void);
extern void sbus_init(void);
extern void prio_tree_init(void);
extern void radix_tree_init(void);
#ifndef CONFIG_DEBUG_RODATA
static inline void mark_rodata_ro(void) { }
#endif

#ifdef CONFIG_TC
extern void tc_init(void);
#endif

/*
 * Debug helper: via this flag we know that we are in 'early bootup code'
 * where only the boot processor is running with IRQ disabled.  This means
 * two things - IRQ must not be enabled before the flag is cleared and some
 * operations which are not allowed with IRQ disabled are allowed while the
 * flag is set.
 */
bool early_boot_irqs_disabled __read_mostly;

enum system_states system_state __read_mostly;
EXPORT_SYMBOL(system_state);

/*
 * Boot command-line arguments
 */
#define MAX_INIT_ARGS CONFIG_INIT_ENV_ARG_LIMIT
#define MAX_INIT_ENVS CONFIG_INIT_ENV_ARG_LIMIT

extern void time_init(void);
/* Default late time init is NULL. archs can override this later. */
void (*__initdata late_time_init)(void);
extern void softirq_init(void);

/* Untouched command line saved by arch-specific code. */
char __initdata boot_command_line[COMMAND_LINE_SIZE];
/* Untouched saved command line (eg. for /proc) */
char *saved_command_line;
/* Command line for parameter parsing */
static char *static_command_line;

static char *execute_command;
static char *ramdisk_execute_command;

/*
 * If set, this is an indication to the drivers that reset the underlying
 * device before going ahead with the initialization otherwise driver might
 * rely on the BIOS and skip the reset operation.
 *
 * This is useful if kernel is booting in an unreliable environment.
 * For ex. kdump situaiton where previous kernel has crashed, BIOS has been
 * skipped and devices will be in unknown state.
 */
unsigned int reset_devices;
EXPORT_SYMBOL(reset_devices);

static int __init set_reset_devices(char *str)
{
    reset_devices = 1;
    return 1;
}

__setup("reset_devices", set_reset_devices);

static const char * argv_init[MAX_INIT_ARGS+2] = { "init", NULL, };
const char * envp_init[MAX_INIT_ENVS+2] = { "HOME=/", "TERM=linux", NULL, };
static const char *panic_later, *panic_param;

extern const struct obs_kernel_param __setup_start[], __setup_end[];

static int __init obsolete_checksetup(char *line)
{
    const struct obs_kernel_param *p;
    int had_early_param = 0;

    p = __setup_start;
    do {
        int n = strlen(p->str);
        if (parameqn(line, p->str, n)) {
            if (p->early) {
                /* Already done in parse_early_param?
                 * (Needs exact match on param part).
                 * Keep iterating, as we can have early
                 * params and __setups of same names 8( */
                if (line[n] == '\0' || line[n] == '=')
                    had_early_param = 1;
            } else if (!p->setup_func) {
                printk(KERN_WARNING "Parameter %s is obsolete,"
                       " ignored
", p->str); return 1; } else if (p->setup_func(line + n)) return 1; } p++; } while (p < __setup_end); return had_early_param; } /* * This should be approx 2 Bo*oMips to start (note initial shift), and will * still work even if initially too large, it will just take slightly longer */ unsigned long loops_per_jiffy = (1<<12); EXPORT_SYMBOL(loops_per_jiffy); static int __init debug_kernel(char *str) { console_loglevel = 10; return 0; } static int __init quiet_kernel(char *str) { console_loglevel = 4; return 0; } early_param("debug", debug_kernel); early_param("quiet", quiet_kernel); static int __init loglevel(char *str) { int newlevel; /* * Only update loglevel value when a correct setting was passed, * to prevent blind crashes (when loglevel being set to 0) that * are quite hard to debug */ if (get_option(&str, &newlevel)) { console_loglevel = newlevel; return 0; } return -EINVAL; } early_param("loglevel", loglevel); /* Change NUL term back to "=", to make "param" the whole string. */ static int __init repair_env_string(char *param, char *val) { if (val) { /* param=val or param="val"? */ if (val == param+strlen(param)+1) val[-1] = '='; else if (val == param+strlen(param)+2) { val[-2] = '='; memmove(val-1, val, strlen(val)+1); val--; } else BUG(); } return 0; } /* * Unknown boot options get handed to init, unless they look like * unused parameters (modprobe will find them in /proc/cmdline). */ static int __init unknown_bootoption(char *param, char *val) { repair_env_string(param, val); /* Handle obsolete-style parameters */ if (obsolete_checksetup(param)) return 0; /* Unused module parameter. */ if (strchr(param, '.') && (!val || strchr(param, '.') < val)) return 0; if (panic_later) return 0; if (val) { /* Environment option */ unsigned int i; for (i = 0; envp_init[i]; i++) { if (i == MAX_INIT_ENVS) { panic_later = "Too many boot env vars at `%s'"; panic_param = param; } if (!strncmp(param, envp_init[i], val - param)) break; } envp_init[i] = param; } else { /* Command line option */ unsigned int i; for (i = 0; argv_init[i]; i++) { if (i == MAX_INIT_ARGS) { panic_later = "Too many boot init vars at `%s'"; panic_param = param; } } argv_init[i] = param; } return 0; } static int __init init_setup(char *str) { unsigned int i; execute_command = str; /* * In case LILO is going to boot us with default command line, * it prepends "auto" before the whole cmdline which makes * the shell think it should execute a script with such name. * So we ignore all arguments entered _before_ init=... [MJ] */ for (i = 1; i < MAX_INIT_ARGS; i++) argv_init[i] = NULL; return 1; } __setup("init=", init_setup); static int __init rdinit_setup(char *str) { unsigned int i; ramdisk_execute_command = str; /* See "auto" comment in init_setup */ for (i = 1; i < MAX_INIT_ARGS; i++) argv_init[i] = NULL; return 1; } __setup("rdinit=", rdinit_setup); #ifndef CONFIG_SMP static const unsigned int setup_max_cpus = NR_CPUS; #ifdef CONFIG_X86_LOCAL_APIC static void __init smp_init(void) { APIC_init_uniprocessor(); } #else #define smp_init() do { } while (0) #endif static inline void setup_nr_cpu_ids(void) { } static inline void smp_prepare_cpus(unsigned int maxcpus) { } #endif /* * We need to store the untouched command line for future reference. * We also need to store the touched command line since the parameter * parsing is performed in place, and we should allow a component to * store reference of name/value for future reference. */ static void __init setup_command_line(char *command_line) { saved_command_line = alloc_bootmem(strlen (boot_command_line)+1); static_command_line = alloc_bootmem(strlen (command_line)+1); strcpy (saved_command_line, boot_command_line); strcpy (static_command_line, command_line); } /* * We need to finalize in a non-__init function or else race conditions * between the root thread and the init thread may cause start_kernel to * be reaped by free_initmem before the root thread has proceeded to * cpu_idle. * * gcc-3.4 accidentally inlines this function, so use noinline. */ static __initdata DECLARE_COMPLETION(kthreadd_done); static noinline void __init_refok rest_init(void) { int pid; rcu_scheduler_starting();//READ-COPY UPDATE /* * We need to spawn init first so that it obtains pid 1, however * the init task will end up wanting to create kthreads, which, if * we schedule it before we create kthreadd, will OOPS. * , kernel_init,pid=1, */ kernel_thread(kernel_init, NULL, CLONE_FS | CLONE_SIGHAND); //numa numa_default_policy(); // kthread_create_list kthread //kthreadd pid = kernel_thread(kthreadd, NULL, CLONE_FS | CLONE_FILES); rcu_read_lock(); // pid,ini_pid_ns kthreadd kthreadd_task = find_task_by_pid_ns(pid, &init_pid_ns); rcu_read_unlock(); // kthreadd_done kernel_init complete(&kthreadd_done); /* * The boot idle thread must execute schedule() * at least once to get things moving: * idle */ init_idle_bootup_task(current); // schedule_preempt_disabled(); /* Call into cpu_idle with preempt disabled */ cpu_idle(); } /* Check for early params. */ static int __init do_early_param(char *param, char *val) { const struct obs_kernel_param *p; for (p = __setup_start; p < __setup_end; p++) { if ((p->early && parameq(param, p->str)) || (strcmp(param, "console") == 0 && strcmp(p->str, "earlycon") == 0) ) { if (p->setup_func(val) != 0) printk(KERN_WARNING "Malformed early option '%s'
", param); } } /* We accept everything at this stage. */ return 0; } void __init parse_early_options(char *cmdline) { parse_args("early options", cmdline, NULL, 0, 0, 0, do_early_param); } /* Arch code calls this early on, or if not, just before other parsing. */ void __init parse_early_param(void) { static __initdata int done = 0; static __initdata char tmp_cmdline[COMMAND_LINE_SIZE]; if (done) return; /* All fall through to do_early_param. */ strlcpy(tmp_cmdline, boot_command_line, COMMAND_LINE_SIZE); parse_early_options(tmp_cmdline); done = 1; } /* * Activate the first processor. */ static void __init boot_cpu_init(void) { int cpu = smp_processor_id(); /* Mark the boot cpu "present", "online" etc for SMP and UP case */ set_cpu_online(cpu, true); set_cpu_active(cpu, true); set_cpu_present(cpu, true); set_cpu_possible(cpu, true); } void __init __weak smp_setup_processor_id(void) { } void __init __weak thread_info_cache_init(void) { } /* * Set up kernel memory allocators */ static void __init mm_init(void) { /* * page_cgroup requires contiguous pages, * bigger than MAX_ORDER unless SPARSEMEM. */ page_cgroup_init_flatmem(); mem_init(); kmem_cache_init(); percpu_init_late(); pgtable_cache_init(); vmalloc_init(); } asmlinkage void __init start_kernel(void) { char * command_line; extern const struct kernel_param __start___param[], __stop___param[]; /* * Need to run as early as possible, to initialize the * lockdep hash: */ // 2 hash -Lock Dependency Validator( ) lockdep_init(); smp_setup_processor_id(); // debug_objects_early_init();// /* * Set up the the initial canary ASAP: */ boot_init_stack_canary();// // -cgroup- cgroup_init_early(); local_irq_disable();// early_boot_irqs_disabled = true; /* * Interrupts are still disabled. Do necessary setups, then * enable them */ tick_init();// boot_cpu_init();// cpu page_address_init();// printk(KERN_NOTICE "%s", linux_banner); setup_arch(&command_line);// mm_init_owner(&init_mm, &init_task);// mm_init_cpumask(&init_mm);// setup_command_line(command_line);// ( 2 ) setup_nr_cpu_ids();//cpuid setup_per_cpu_areas();// cpu ( gdt) //smp cpu smp_prepare_boot_cpu(); /* arch-specific boot-cpu hooks */ // build_all_zonelists(NULL); // page_alloc_init(); printk(KERN_NOTICE "Kernel command line: %s
", boot_command_line); // boot_command_line parse_early_param(); // parse_args("Booting kernel", static_command_line, __start___param, __stop___param - __start___param, -1, -1, &unknown_bootoption); // jump_label_init(); /* * These use large bootmem allocations and must precede * kmem_cache_init() * */ setup_log_buf(0); pidhash_init(); vfs_caches_init_early(); sort_main_extable(); trap_init(); mm_init(); /* * Set up the scheduler prior starting any interrupts (such as the * timer interrupt). Full topology setup happens at smp_init() * time - but meanwhile we still have a functioning scheduler. * */ sched_init(); /* * Disable preemption - early bootup scheduling is extremely * fragile until we cpu_idle() for the first time. * */ preempt_disable(); if (!irqs_disabled()) { printk(KERN_WARNING "start_kernel(): bug: interrupts were " "enabled *very* early, fixing it
"); local_irq_disable(); } idr_init_cache();//idr perf_event_init();//performance event rcu_init();//read-copy-update radix_tree_init();//radix /* init some links before init_ISA_irqs() */ early_irq_init();// init_IRQ();// prio_tree_init();// init_timers();// hrtimers_init();//High-resolution kernel timers softirq_init();// timekeeping_init();// time_init();// profile_init();// call_function_init();//smp cpu call_single_queue if (!irqs_disabled()) printk(KERN_CRIT "start_kernel(): bug: interrupts were " "enabled early
"); early_boot_irqs_disabled = false;// local_irq_enable();// kmem_cache_init_late();//kmem /* * HACK ALERT! This is early. We're enabling the console before * we've done PCI setups etc, and console_init() must be aware of * this. But we do want output early, in case something goes wrong. */ console_init();// if (panic_later) panic(panic_later, panic_param); // lockdep_info(); /* * Need to run this when irqs are enabled, because it wants * to self-test [hard/soft]-irqs on/off lock inversion bugs * too: */ locking_selftest(); #ifdef CONFIG_BLK_DEV_INITRD if (initrd_start && !initrd_below_start_ok && page_to_pfn(virt_to_page((void *)initrd_start)) < min_low_pfn) { printk(KERN_CRIT "initrd overwritten (0x%08lx < 0x%08lx) - " "disabling it.
", page_to_pfn(virt_to_page((void *)initrd_start)), min_low_pfn); initrd_start = 0; } #endif page_cgroup_init();//control groups debug_objects_mem_init();// kmemleak_init();// setup_per_cpu_pageset();// cpu set numa_policy_init();//numa if (late_time_init) late_time_init(); // cpusched_clock_data=ktime_now sched_clock_init(); calibrate_delay();// cpuMIPS /s pidmap_init();//pid id anon_vma_init();// #ifdef CONFIG_X86 if (efi_enabled)//efi bois efi_enter_virtual_mode(); #endif thread_info_cache_init();// thread_info cred_init();//credential // , / fork_init(totalram_pages); proc_caches_init();// buffer_init();// key_init();// , keys security_init();// dbg_late_init();// vfs_caches_init(totalram_pages);// signals_init();//sigqueue , /* rootfs populating might need page-writeback */ page_writeback_init();// #ifdef CONFIG_PROC_FS proc_root_init();//proc #endif cgroup_init();//cgroup cpuset_init();//cpuset taskstats_init_early();// delayacct_init();// check_bugs();// bug //acpi acpi_early_init(); /* before LAPIC and SMP init */ sfi_init_late();//Simple Firmware Interface // , ftrace_init(); /* Do the rest non-__init'ed, we're now alive */ rest_init(); } /* Call all constructor functions linked into the kernel. */ static void __init do_ctors(void) { #ifdef CONFIG_CONSTRUCTORS ctor_fn_t *fn = (ctor_fn_t *) __ctors_start; for (; fn < (ctor_fn_t *) __ctors_end; fn++) (*fn)(); #endif } bool initcall_debug; core_param(initcall_debug, initcall_debug, bool, 0644); static char msgbuf[64]; static int __init_or_module do_one_initcall_debug(initcall_t fn) { ktime_t calltime, delta, rettime; unsigned long long duration; int ret; printk(KERN_DEBUG "calling %pF @ %i
", fn, task_pid_nr(current)); calltime = ktime_get(); ret = fn(); rettime = ktime_get(); delta = ktime_sub(rettime, calltime); duration = (unsigned long long) ktime_to_ns(delta) >> 10; printk(KERN_DEBUG "initcall %pF returned %d after %lld usecs
", fn, ret, duration); return ret; } int __init_or_module do_one_initcall(initcall_t fn) { int count = preempt_count(); int ret; if (initcall_debug) ret = do_one_initcall_debug(fn); else ret = fn(); msgbuf[0] = 0; if (ret && ret != -ENODEV && initcall_debug) sprintf(msgbuf, "error code %d ", ret); if (preempt_count() != count) { strlcat(msgbuf, "preemption imbalance ", sizeof(msgbuf)); preempt_count() = count; } if (irqs_disabled()) { strlcat(msgbuf, "disabled interrupts ", sizeof(msgbuf)); local_irq_enable(); } if (msgbuf[0]) { printk("initcall %pF returned with %s
", fn, msgbuf); } return ret; } extern initcall_t __initcall_start[]; extern initcall_t __initcall0_start[]; extern initcall_t __initcall1_start[]; extern initcall_t __initcall2_start[]; extern initcall_t __initcall3_start[]; extern initcall_t __initcall4_start[]; extern initcall_t __initcall5_start[]; extern initcall_t __initcall6_start[]; extern initcall_t __initcall7_start[]; extern initcall_t __initcall_end[]; static initcall_t *initcall_levels[] __initdata = { __initcall0_start, __initcall1_start, __initcall2_start, __initcall3_start, __initcall4_start, __initcall5_start, __initcall6_start, __initcall7_start, __initcall_end, }; static char *initcall_level_names[] __initdata = { "early parameters", "core parameters", "postcore parameters", "arch parameters", "subsys parameters", "fs parameters", "device parameters", "late parameters", }; static void __init do_initcall_level(int level) { extern const struct kernel_param __start___param[], __stop___param[]; initcall_t *fn; strcpy(static_command_line, saved_command_line); parse_args(initcall_level_names[level], static_command_line, __start___param, __stop___param - __start___param, level, level, repair_env_string); for (fn = initcall_levels[level]; fn < initcall_levels[level+1]; fn++) do_one_initcall(*fn); } static void __init do_initcalls(void) { int level; for (level = 0; level < ARRAY_SIZE(initcall_levels) - 1; level++) do_initcall_level(level); } /* * Ok, the machine is now initialized. None of the devices * have been touched yet, but the CPU subsystem is up and * running, and memory and process management works. * * Now we can finally start doing some real work.. */ static void __init do_basic_setup(void) { cpuset_init_smp();//smp cpuset usermodehelper_init();//khelper shmem_init();//sheme driver_init();// init_irq_proc();//proc irq do_ctors();// , .ctors usermodehelper_enable(); // do_initcalls(); } static void __init do_pre_smp_initcalls(void) { initcall_t *fn; for (fn = __initcall_start; fn < __initcall0_start; fn++) do_one_initcall(*fn); } static void run_init_process(const char *init_filename) { argv_init[0] = init_filename; kernel_execve(init_filename, argv_init, envp_init); } /* This is a non __init function. Force it to be noinline otherwise gcc * makes it inline to init() and it becomes part of init.text section * Init , gcc init(), Init.text */ static noinline int init_post(void) { /* need to finish all async __init code before freeing the memory * init , __init */ async_synchronize_full(); free_initmem();// init.* // , read only mark_rodata_ro(); // system_state = SYSTEM_RUNNING; //numa numa_default_policy(); // , init current->signal->flags |= SIGNAL_UNKILLABLE; // ramdisk_execute_command init , if (ramdisk_execute_command) { run_init_process(ramdisk_execute_command); printk(KERN_WARNING "Failed to execute %s
", ramdisk_execute_command); } /* * We try each of these until one succeeds. * * The Bourne shell can be used instead of init if we are * trying to recover a really broken machine. * , , , 4 */ if (execute_command) { run_init_process(execute_command); printk(KERN_WARNING "Failed to execute %s. Attempting " "defaults...
", execute_command); } run_init_process("/sbin/init"); run_init_process("/etc/init"); run_init_process("/bin/init"); run_init_process("/bin/sh"); // 4 init , panic("No init found. Try passing init= option to kernel. " "See Linux Documentation/init.txt for guidance."); } static int __init kernel_init(void * unused) { /* * Wait until kthreadd is all set-up. kthreadd */ wait_for_completion(&kthreadd_done); /* Now the scheduler is fully set up and can do blocking allocations * */ gfp_allowed_mask = __GFP_BITS_MASK; /* * init can allocate pages on any node */ set_mems_allowed(node_states[N_HIGH_MEMORY]); /* * init can run on any cpu. */ set_cpus_allowed_ptr(current, cpu_all_mask); //cad_pid Ctrl-alt-del INT ID, init pid // init 3 cad_pid = task_pid(current); //smp 、 cpu smp_prepare_cpus(setup_max_cpus); do_pre_smp_initcalls(); lockup_detector_init(); smp_init(); sched_init_smp(); // 、 do_basic_setup(); /* Open the /dev/console on the rootfs, this should never fail * /dev/console */ if (sys_open((const char __user *) "/dev/console", O_RDWR, 0) < 0) printk(KERN_WARNING "Warning: unable to open an initial console.
"); /* * 0, 1, 2 */ (void) sys_dup(0); (void) sys_dup(0); /* * check if there is an early userspace init. If yes, let it do all * the work * init , , */ if (!ramdisk_execute_command) ramdisk_execute_command = "/init"; if (sys_access((const char __user *) ramdisk_execute_command, 0) != 0) { ramdisk_execute_command = NULL; prepare_namespace(); } /* * Ok, we have completed the initial bootup, and * we're essentially up and running. Get rid of the * initmem segments and start the user-mode stuff.. */ // init init_post(); return 0; }

좋은 웹페이지 즐겨찾기