[algorithm] 플로이드 워셜

n : n 으로 모든 노드에서 모든 노드로 가는 최단경로를 계산하는 알고리즘

2차원 테이블에 최단 거리 정보를 저장
(그래프 표현 : 인접 행렬 인접리스트) -> 초기 그래프 표현이 갱신될 dp 테이블이 된다.

다이나믹 프로그래밍 유형에 속한다.

dp 점화식

D[a, b] = min( D[a, b], D[a, k] + D[k, b] )

위 점화식을 적용한 코드는 O(n^3)이다.
1차 반복은 모든 노드에 대해 특정 k 노드를 거쳐 가는 경우를 고려한다.
2, 3차 반복은 특정 k 노드가 출발, 도착노드가 되는 경우( 거쳐가는 경우가 아니기 때문 )를 제외한 2차원 테이블을 순회한다.

python

INF = int(1e9) # 무한을 의미하는 값으로 10억을 설정

# 노드의 개수 및 간선의 개수를 입력받기
n = int(input())
m = int(input())
# 2차원 리스트(그래프 표현)를 만들고, 모든 값을 무한으로 초기화
graph = [[INF] * (n + 1) for _ in range(n + 1)]

# 자기 자신에서 자기 자신으로 가는 비용은 0으로 초기화
for a in range(1, n + 1):
    for b in range(1, n + 1):
        if a == b:
            graph[a][b] = 0

# 각 간선에 대한 정보를 입력 받아, 그 값으로 초기화
for _ in range(m):
    # A에서 B로 가는 비용은 C라고 설정
    a, b, c = map(int, input().split())
    graph[a][b] = c

# 점화식에 따라 플로이드 워셜 알고리즘을 수행
for k in range(1, n + 1):
    for a in range(1, n + 1):
        for b in range(1, n + 1):
            graph[a][b] = min(graph[a][b], graph[a][k] + graph[k][b])

# 수행된 결과를 출력
for a in range(1, n + 1):
    for b in range(1, n + 1):
        # 도달할 수 없는 경우, 무한(INFINITY)이라고 출력
        if graph[a][b] == 1e9:
            print("INFINITY", end=" ")
        # 도달할 수 있는 경우 거리를 출력
        else:
            print(graph[a][b], end=" ")
    print()

java

import java.util.*;

class Node {

    private int index;
    private int distance;

    public Node(int index, int distance) {
        this.index = index;
        this.distance = distance;
    }

    public int getIndex() {
        return this.index;
    }

    public int getDistance() {
        return this.distance;
    }
}

public class Main {

    public static final int INF = (int) 1e9; // 무한을 의미하는 값으로 10억을 설정
    // 노드의 개수(N), 간선의 개수(M), 시작 노드 번호(Start)
    // 노드의 개수는 최대 100,000개라고 가정
    public static int n, m, start;
    // 각 노드에 연결되어 있는 노드에 대한 정보를 담는 배열
    public static ArrayList<ArrayList<Node>> graph = new ArrayList<ArrayList<Node>>();
    // 방문한 적이 있는지 체크하는 목적의 배열 만들기
    public static boolean[] visited = new boolean[100001];
    // 최단 거리 테이블 만들기
    public static int[] d = new int[100001];

    // 방문하지 않은 노드 중에서, 가장 최단 거리가 짧은 노드의 번호를 반환
    public static int getSmallestNode() {
        int min_value = INF;
        int index = 0; // 가장 최단 거리가 짧은 노드(인덱스)
        for (int i = 1; i <= n; i++) {
            if (d[i] < min_value && !visited[i]) {
                min_value = d[i];
                index = i;
            }
        }
        return index;
    }

    public static void dijkstra(int start) {
        // 시작 노드에 대해서 초기화
        d[start] = 0;
        visited[start] = true;
        for (int j = 0; j < graph.get(start).size(); j++) {
            d[graph.get(start).get(j).getIndex()] = graph.get(start).get(j).getDistance();
        }
        // 시작 노드를 제외한 전체 n - 1개의 노드에 대해 반복
        for (int i = 0; i < n - 1; i++) {
            // 현재 최단 거리가 가장 짧은 노드를 꺼내서, 방문 처리
            int now = getSmallestNode();
            visited[now] = true;
            // 현재 노드와 연결된 다른 노드를 확인
            for (int j = 0; j < graph.get(now).size(); j++) {
                int cost = d[now] + graph.get(now).get(j).getDistance();
                // 현재 노드를 거쳐서 다른 노드로 이동하는 거리가 더 짧은 경우
                if (cost < d[graph.get(now).get(j).getIndex()]) {
                    d[graph.get(now).get(j).getIndex()] = cost;
                }
            }
        }
    }

    public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);

        n = sc.nextInt();
        m = sc.nextInt();
        start = sc.nextInt();

        // 그래프 초기화
        for (int i = 0; i <= n; i++) {
            graph.add(new ArrayList<Node>());
        }

        // 모든 간선 정보를 입력받기
        for (int i = 0; i < m; i++) {
            int a = sc.nextInt();
            int b = sc.nextInt();
            int c = sc.nextInt();
            // a번 노드에서 b번 노드로 가는 비용이 c라는 의미
            graph.get(a).add(new Node(b, c));
        }

        // 최단 거리 테이블을 모두 무한으로 초기화
        Arrays.fill(d, INF);

        // 다익스트라 알고리즘을 수행
        dijkstra(start);

        // 모든 노드로 가기 위한 최단 거리를 출력
        for (int i = 1; i <= n; i++) {
            // 도달할 수 없는 경우, 무한(INFINITY)이라고 출력
            if (d[i] == INF) {
                System.out.println("INFINITY");
            }
            // 도달할 수 있는 경우 거리를 출력
            else {
                System.out.println(d[i]);
            }
        }
    }
}

참고 : 나동빈의 '이것이 취업을 위한 코딩 테스트다 with 파이썬'

좋은 웹페이지 즐겨찾기