[알고리즘] 백준 - 도로포장
실패한 내 풀이
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Comparator;
import java.util.List;
import java.util.PriorityQueue;
public class baekjoon_1162 {
static int N, M, K;
static List<int[]>[] graph;
static List<int[]> roads;
static boolean[] backTrackingVisited;
static int min_ans = Integer.MAX_VALUE;
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
String[] inputs = br.readLine().split(" ");
N = Integer.parseInt(inputs[0]); //도시 수
M = Integer.parseInt(inputs[1]); //도로 수
K = Integer.parseInt(inputs[2]); //포장할 도로 수
graph = new ArrayList[N+1];
backTrackingVisited = new boolean[N + 1];
roads = new ArrayList<>();
for (int i = 0; i < N + 1; i++) {
graph[i] = new ArrayList<>();
}
for (int i = 0; i < M; i++) {
inputs = br.readLine().split(" ");
int start = Integer.parseInt(inputs[0]);
int end = Integer.parseInt(inputs[1]);
int cost = Integer.parseInt(inputs[2]); //포장할 도로 수
graph[start].add(new int[]{cost, end});
graph[end].add(new int[]{cost, start});
roads.add(new int[]{start, end, cost});
}
solve();
System.out.println(min_ans);
}
private static void solve() {
backTracking(0, 0, K);
}
private static void backTracking(int curPos, int curCount, int maxCount) {
if (curPos == roads.size() && curCount < maxCount) {
return;
}
if (curCount == K) {
//도로 설치
construct_road();
min_ans = Math.min(min_ans, dijkstra());
//도로 제거
remove_road();
return;
}
backTrackingVisited[curPos] = true;
backTracking(curPos + 1, curCount + 1, maxCount);
backTrackingVisited[curPos] = false;
backTracking(curPos+1, curCount, maxCount);
}
private static void remove_road() {
ArrayList<int[]> constructedRoads = new ArrayList<>();
for (int i = 1; i < backTrackingVisited.length; i++) {
if (backTrackingVisited[i] == true) {
constructedRoads.add(roads.get(i));
}
}
for (int[] constructedRoad : constructedRoads) {
int start = constructedRoad[0];
int end = constructedRoad[1];
int cost = constructedRoad[2];
for (int i = 0; i < graph[start].size(); i++) {
if (graph[start].get(i)[1] == end) { //
graph[start].get(i)[0] = cost; //원상복구
}
}
}
}
private static void construct_road() {
ArrayList<int[]> constructedRoads = new ArrayList<>();
for (int i = 1; i < backTrackingVisited.length; i++) {
if (backTrackingVisited[i] == true) {
constructedRoads.add(roads.get(i));
}
}
for (int[] constructedRoad : constructedRoads) {
int start = constructedRoad[0];
int end = constructedRoad[1];
for (int i = 0; i < graph[start].size(); i++) {
if (graph[start].get(i)[1] == end) { //포장하려는 도로와 같은 도로가 있다면
graph[start].get(i)[0] = 0; //포장해서 비용을 0으로 만든다
}
}
}
}
private static int dijkstra() {
int[] distances = new int[N+1];
Arrays.fill(distances, Integer.MAX_VALUE);
distances[1] = 0;
PriorityQueue<int[]> pq = new PriorityQueue<>(new Comparator<int[]>() {
@Override
public int compare(int[] o1, int[] o2) {
return o1[0] < o2[0] ? -1 : o1[0] == o2[0] ? 0 : 1;
}
});
pq.add(new int[]{0, 1}); //cost, node
while (!pq.isEmpty()) {
int[] polls = pq.poll();
int cost = polls[0];
int node = polls[1];
if (node == N) {
return cost;
}
for (int[] adjNodeCost : graph[node]) {
int adjNode = adjNodeCost[1];
int adjCost = adjNodeCost[0];
if (distances[adjNode] > cost + adjCost) {
distances[adjNode] = cost + adjCost;
pq.add(new int[]{cost + adjCost, adjNode});
}
}
}
return distances[N];
}
}
처음에는 K개의 범위가 그리 크지 않아서 백트랙킹으로 완탐을 이용하여 각 경우에 대해 다익스트라를 쓰려고 했다. 하지만 메모리 초과가 났다.
다른 사람 풀이
import java.util.*;
public class Main {
public static List<int[]>[] edges = new ArrayList[10001];
public static int K;
public static void main(String[] args) {
Scanner sca = new Scanner(System.in);
N = sca.nextInt();
int M = sca.nextInt();
K = sca.nextInt();
for (int i = 0; i < 10001; i++) {
edges[i] = new ArrayList<>();
}
for (int i = 0; i < M; i++) {
int a = sca.nextInt();
int b = sca.nextInt();
int dis = sca.nextInt();
int[] atob = new int[]{b, dis};
int[] btoa = new int[]{a, dis};
edges[a].add(atob);
edges[b].add(btoa);
}
dijkstra();
System.out.println(curMin);
}
public static long curMin = Long.MAX_VALUE;
public static int N;
public static long distance[][] = new long[10001][21];
public static void dijkstra() {
for (int i = 0; i < 10001; i++) {
Arrays.fill(distance[i], Long.MAX_VALUE);
}
// node, dist, cut
PriorityQueue<long[]> pq = new PriorityQueue<>(new Comparator<long[]>() {
@Override
public int compare(long[] o1, long[] o2) {
return o1[1] < o2[1] ? -1 : o1[1] == o2[1] ? 0 : 1;
}
});
pq.add(new long[]{1, 0, 0});
distance[1][0] = 0;
while (!pq.isEmpty()) {
long[] list = pq.poll();
int curNode = (int)list[0];
long curDist = list[1];
int cutCount = (int)list[2];
if(curDist > distance[curNode][cutCount])
continue;
for (int i = 0; i < edges[curNode].size(); i++) {
int next = edges[curNode].get(i)[0];
int edgeCost = edges[curNode].get(i)[1];
// cut 할 수 있다면, cut 해본다
if(cutCount < K && distance[next][cutCount+1] > curDist){
distance[next][cutCount+1] = curDist;
pq.add(new long[]{next, curDist, cutCount+1});
}
// cut을 안해본다
if(distance[next][cutCount] > curDist + edgeCost){
distance[next][cutCount] = curDist + edgeCost;
pq.add(new long[]{next, curDist + edgeCost, cutCount});
}
}
}
for (int i = 0; i <= K; i++) {
curMin = Math.min(curMin, distance[N][i]);
}
}
}
dp를 활용해서 풀었다.
Author And Source
이 문제에 관하여([알고리즘] 백준 - 도로포장), 우리는 이곳에서 더 많은 자료를 발견하고 링크를 클릭하여 보았다 https://velog.io/@injoon2019/알고리즘-백준-도로포장저자 귀속: 원작자 정보가 원작자 URL에 포함되어 있으며 저작권은 원작자 소유입니다.
우수한 개발자 콘텐츠 발견에 전념 (Collection and Share based on the CC Protocol.)