얼굴 인식의 모방 변환
26843 단어 얼굴 인식
import numpy as np
import cv2
class FaceWarpException(Exception):
def __str__(self):
return 'In File {}:{}'.format(__file__,super.
__str__(self))
DEFAULT_CROP_SIZE = (96, 112)
REFERENCE_FACIAL_POINTS = [
[30.29459953, 51.69630051],
[65.53179932, 51.50139999],
[48.02519989, 71.73660278],
[33.54930115, 92.3655014],
[62.72990036, 92.20410156]
]
def get_reference_facial_points(
output_size=None,
inner_padding_factor=0.0,
outer_padding=(0, 0),
default_square=True
):
tmp_5pts = np.array(REFERENCE_FACIAL_POINTS)
tmp_crop_size = np.array(DEFAULT_CROP_SIZE)
if default_square:
size_diff = max(tmp_crop_size)-tmp_crop_size
tmp_5pts += size_diff/2
tmp_crop_size +=size_diff
if (output_size and output_size[0] == tmp_crop_size[0] and
output_size[1] == tmp_crop_size[1]):
return tmp_5pts
if (inner_padding_factor == 0 and outer_padding == (0,0)):
if output_size is None:
return tmp_5pts
else:
raise FaceWarpException(
'No paddings to do, output_size must be None or {}'.format(tmp_crop_size)
)
if not (0<=inner_padding_factor<=1.0):
raise FaceWarpException('Npt (0 <= inner_padding_factor<=1.0')
if ((inner_padding_factor>0 or outer_padding[0]>0 or outer_padding[1]>0
) and output_size is None):
output_size = tmp_crop_size*(1+inner_padding_factor*2).astype(np.int32)
output_size += np.array(outer_padding)
if not (outer_padding[0] < output_size[0]
and outer_padding[1] < output_size[1]):
raise FaceWarpException('Not (outer_padding[0] < output_size[0]'
'and outer_padding[1] < output_size[1])')
if inner_padding_factor>0:
size_diff = tmp_crop_size * inner_padding_factor*2
tmp_5pts += size_diff/2
tmp_crop_size += np.round(size_diff).astype(np.int32)
size_bf_outer_pad = np.array(output_size) - np.array(outer_padding)*2
if size_bf_outer_pad[0] *tmp_crop_size[1]!=size_bf_outer_pad[1]*tmp_crop_size[0]:
raise FaceWarpException('Must have ()= some_scale * (crop_size * (1.0 + inner_padding_factor)')
scale_factor = size_bf_outer_pad[0].astype(np.float32)/tmp_crop_size[0]
tmp_5pts = tmp_5pts*scale_factor
reference_5point = tmp_5pts+np.array(outer_padding)
return reference_5point
def get_affine_tranform_matrix(src_pts,dst_pts):
tfm = np.float32([[1,0,0],[0,1,0]])
n_pts= src_pts.shape[0]
ones = np.ones((n_pts,1),src_pts.dtype)
src_pts_ = np.hstack([src_pts,ones])
dst_pts_ = np.hstack([dst_pts,ones])
A,res,rank,s = np.linalg.lstsq(src_pts_,dst_pts_)
if rank == 3:
tfm = np.float32([A[0,0],A[1,0],A[2,0]],[A[0,1],A[1,1],A[2,1]])
elif rank ==2:
tfm = np.float32([A[0,0],A[1.0],0],[
A[0,1],A[1,1],0
])
return tfm
def warp_and_crop_face(
src_img,facial_pts,
reference_pts = None,
crop_size = (96,112),
align_type = 'smilarity'
):
if reference_pts is None:
if crop_size[0] == 96 and crop_size[1]==112:
reference_pts = REFERENCE_FACIAL_POINTS
else:
default_square = False
inner_padding_factor = 0
outer_padding = (0,0)
output_size = crop_size
reference_pts = get_reference_facial_points(output_size,
inner_padding_factor,
outer_padding,
default_square)
ref_pts = np.float32(reference_pts)
ref_pts_shp = ref_pts.shape
if max(ref_pts_shp)<3 or min(ref_pts_shp)!=2:
raise FaceWarpException(
'reference_pts.shape must be (k,2) or (2,k) and k>2'
)
if ref_pts_shp[0] ==2:
ref_pts = ref_pts.T
src_pts = np.float32(facial_pts)
src_pts_shp = src_pts.shape
if max(src_pts_shp)<3 or min(src_pts_shp)!=2:
raise FaceWarpException(
'have the same shape'
)
if align_type is 'cv2.affine':
tfm = cv2.getAffineTransform(src_pts,ref_pts)
elif align_type is 'affine':
tfm = get_affine_tranform_matrix(src_pts,ref_pts)
face_img = cv2.warpAffine(src_img,tfm,(crop_size[0],crop_size[1]))
return face_img
이 내용에 흥미가 있습니까?
현재 기사가 여러분의 문제를 해결하지 못하는 경우 AI 엔진은 머신러닝 분석(스마트 모델이 방금 만들어져 부정확한 경우가 있을 수 있음)을 통해 가장 유사한 기사를 추천합니다:
Amazon Rekognition으로 얼굴 인식하기(AWS CLI에서 간편하게)AWS Rekognition으로 얼굴 인식 시스템을 구축할 때 어떤 느낌으로 움직이는지 살펴보았습니다. 본격적인 시스템을 구축하기 전에 시도한 단계를 남겨 둡니다. macOS Catalina aws-cli 2.1.1...
텍스트를 자유롭게 공유하거나 복사할 수 있습니다.하지만 이 문서의 URL은 참조 URL로 남겨 두십시오.
CC BY-SA 2.5, CC BY-SA 3.0 및 CC BY-SA 4.0에 따라 라이센스가 부여됩니다.