[위 에]word2vec 소스 코드 분석 word2vec.c

word2vec 소스 코드 해석 word2vec.c
최근 구 글 의 오픈 소스 프로젝트 워드 2 vector 를 연구 해 봤 는데,http://code.google.com/p/word2vec/。
사실 이 물건 은 신경 망 이 텍스트 발굴 에 성공 한 응용 이 라 고 할 수 있다.
//     word2vec.c   
//          ,        http://www.cnblogs.com/downtjs/p/3784440.html


//  Copyright 2013 Google Inc. All Rights Reserved.
//
//  Licensed under the Apache License, Version 2.0 (the "License");
//  you may not use this file except in compliance with the License.
//  You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
//  Unless required by applicable law or agreed to in writing, software
//  distributed under the License is distributed on an "AS IS" BASIS,
//  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
//  See the License for the specific language governing permissions and
//  limitations under the License.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <pthread.h>

#define MAX_STRING 100
#define EXP_TABLE_SIZE 1000
#define MAX_EXP 6
#define MAX_SENTENCE_LENGTH 1000
#define MAX_CODE_LENGTH 40

const int vocab_hash_size = 30000000;  // Maximum 30 * 0.7 = 21M words in the vocabulary

typedef float real;                    // Precision of float numbers

struct vocab_word
{
  long long cn;//  
  int *point;//huffman          
  char *word, *code, codelen;//huffman  
};

char train_file[MAX_STRING], output_file[MAX_STRING];
char save_vocab_file[MAX_STRING], read_vocab_file[MAX_STRING];
struct vocab_word *vocab;
int binary = 0, cbow = 0, debug_mode = 2, window = 5, min_count = 5, num_threads = 1, min_reduce = 1;
int *vocab_hash;
long long vocab_max_size = 1000, vocab_size = 0, layer1_size = 100;
long long train_words = 0, word_count_actual = 0, file_size = 0, classes = 0;
real alpha = 0.025, starting_alpha, sample = 0;
real *syn0, *syn1, *syn1neg, *expTable;
clock_t start;

int hs = 1, negative = 0;
const int table_size = 1e8;
int *table;


//          ,table         
void InitUnigramTable()
{
  int a, i;
  long long train_words_pow = 0;
  real d1, power = 0.75;
  table = (int *)malloc(table_size * sizeof(int));
  for (a = 0; a < vocab_size; a++) //     ,        train_words_pow,  power        。
	  train_words_pow += pow(vocab[a].cn, power);
  i = 0;
  d1 = pow(vocab[i].cn, power) / (real)train_words_pow;//                   
  for (a = 0; a < table_size; a++)//  table。a  table   ,i        
  {
    table[a] = i;//  i  table a  
    //table             ,        ,    table     
    if (a / (real)table_size > d1)
    {
      i++;//       
      d1 += pow(vocab[i].cn, power) / (real)train_words_pow;
    }
    if (i >= vocab_siInitNetze) i = vocab_size - 1;
  }
}

// Reads a single word from a file, assuming space + tab + EOL to be word boundaries
//         
void ReadWord(char *word, FILE *fin) {
  int a = 0, ch;
  while (!feof(fin)) {
    ch = fgetc(fin);
    if (ch == 13) continue;
    if ((ch == ' ') || (ch == '\t') || (ch == '
')) { if (a > 0) { if (ch == '
') ungetc(ch, fin); break; } if (ch == '
') { strcpy(word, (char *)"</s>"); return; } else continue; } word[a] = ch; a++; if (a >= MAX_STRING - 1) a--; // Truncate too long words } word[a] = 0; } // Returns hash value of a word hash , hash ( ) int GetWordHash(char *word) { unsigned long long a, hash = 0; for (a = 0; a < strlen(word); a++) hash = hash * 257 + word[a];// 257 hash = hash % vocab_hash_size; return hash; } // Returns position of a word in the vocabulary; if the word is not found, returns -1 // , -1 int SearchVocab(char *word) { unsigned int hash = GetWordHash(word); while (1) { if (vocab_hash[hash] == -1) return -1; if (!strcmp(word, vocab[vocab_hash[hash]].word)) return vocab_hash[hash]; hash = (hash + 1) % vocab_hash_size; } return -1; } // Reads a word and returns its index in the vocabulary // , int ReadWordIndex(FILE *fin) { char word[MAX_STRING]; ReadWord(word, fin); if (feof(fin)) return -1; return SearchVocab(word); } // Adds a word to the vocabulary int AddWordToVocab(char *word) { unsigned int hash, length = strlen(word) + 1; if (length > MAX_STRING) length = MAX_STRING; vocab[vocab_size].word = (char *)calloc(length, sizeof(char)); strcpy(vocab[vocab_size].word, word); vocab[vocab_size].cn = 0; vocab_size++; // Reallocate memory if needed if (vocab_size + 2 >= vocab_max_size) { vocab_max_size += 1000; vocab = (struct vocab_word *)realloc(vocab, vocab_max_size * sizeof(struct vocab_word)); } hash = GetWordHash(word); while (vocab_hash[hash] != -1)// hash hash = (hash + 1) % vocab_hash_size;// vocab_hash[hash] = vocab_size - 1;// hash return vocab_size - 1; } // Used later for sorting by word counts int VocabCompare(const void *a, const void *b) { return ((struct vocab_word *)b)->cn - ((struct vocab_word *)a)->cn; } // Sorts the vocabulary by frequency using word counts // void SortVocab() { int a, size; unsigned int hash; // Sort the vocabulary and keep </s> at the first position qsort(&vocab[1], vocab_size - 1, sizeof(struct vocab_word), VocabCompare); for (a = 0; a < vocab_hash_size; a++) vocab_hash[a] = -1; size = vocab_size; train_words = 0; for (a = 0; a < size; a++) { // Words occuring less than min_count times will be discarded from the vocab // if (vocab[a].cn < min_count) { vocab_size--; free(vocab[vocab_size].word); } else { // Hash will be re-computed, as after the sorting it is not actual // hash 。vocab_hash hash hash=GetWordHash(vocab[a].word); while (vocab_hash[hash] != -1) hash = (hash + 1) % vocab_hash_size; vocab_hash[hash] = a; train_words += vocab[a].cn; } } vocab = (struct vocab_word *)realloc(vocab, (vocab_size + 1) * sizeof(struct vocab_word)); // Allocate memory for the binary tree construction for (a = 0; a < vocab_size; a++) { vocab[a].code = (char *)calloc(MAX_CODE_LENGTH, sizeof(char)); vocab[a].point = (int *)calloc(MAX_CODE_LENGTH, sizeof(int)); } } // Reduces the vocabulary by removing infrequent tokens // , void ReduceVocab() { int a, b = 0; unsigned int hash; for (a = 0; a < vocab_size; a++)// , if (vocab[a].cn > min_reduce) { vocab[b].cn = vocab[a].cn; vocab[b].word = vocab[a].word; b++; } else free(vocab[a].word); vocab_size = b; for (a = 0; a < vocab_hash_size; a++) vocab_hash[a] = -1; for (a = 0; a < vocab_size; a++) { // Hash will be re-computed, as it is not actual hash = GetWordHash(vocab[a].word); while (vocab_hash[hash] != -1) hash = (hash + 1) % vocab_hash_size; vocab_hash[hash] = a; } fflush(stdout); min_reduce++; } // Create binary Huffman tree using the word counts huffman // Frequent words will have short uniqe binary codes huffman void CreateBinaryTree() { long long a, b, i, min1i, min2i, pos1, pos2, point[MAX_CODE_LENGTH]; char code[MAX_CODE_LENGTH]; long long *count = (long long *)calloc(vocab_size * 2 + 1, sizeof(long long)); long long *binary = (long long *)calloc(vocab_size * 2 + 1, sizeof(long long)); long long *parent_node = (long long *)calloc(vocab_size * 2 + 1, sizeof(long long)); for (a = 0; a < vocab_size; a++) count[a] = vocab[a].cn; for (a = vocab_size; a < vocab_size * 2; a++) count[a] = 1e15; pos1 = vocab_size - 1; pos2 = vocab_size; // Following algorithm constructs the Huffman tree by adding one node at a time for (a = 0; a < vocab_size - 1; a++) { // First, find two smallest nodes 'min1, min2' if (pos1 >= 0)// { if (count[pos1] < count[pos2]) { min1i = pos1; pos1--; } else { min1i = pos2; pos2++; } } else { min1i = pos2; pos2++; } if (pos1 >= 0)// { if (count[pos1] < count[pos2]) { min2i = pos1; pos1--; } else { min2i = pos2; pos2++; } } else { min2i = pos2; pos2++; } count[vocab_size + a] = count[min1i] + count[min2i]; parent_node[min1i] = vocab_size + a; parent_node[min2i] = vocab_size + a; binary[min2i] = 1;// 1, 0。 } // Now assign binary code to each vocabulary word for (a = 0; a < vocab_size; a++) { b = a; i = 0; while (1) { code[i] = binary[b]; point[i] = b; i++; b = parent_node[b]; if (b == vocab_size * 2 - 2) break; } vocab[a].codelen = i; vocab[a].point[0] = vocab_size - 2; for (b = 0; b < i; b++) { vocab[a].code[i - b - 1] = code[b]; vocab[a].point[i - b] = point[b] - vocab_size; } } free(count); free(binary); free(parent_node); } // void LearnVocabFromTrainFile() { char word[MAX_STRING]; FILE *fin; long long a, i; for (a = 0; a < vocab_hash_size; a++) vocab_hash[a] = -1; fin = fopen(train_file, "rb"); if (fin == NULL) { printf("ERROR: training data file not found!
"); exit(1); } vocab_size = 0; AddWordToVocab((char *)"</s>"); while (1) { ReadWord(word, fin); if (feof(fin)) break; train_words++; if ((debug_mode > 1) && (train_words % 100000 == 0)) { printf("%lldK%c", train_words / 1000, 13); fflush(stdout); } i = SearchVocab(word);// if (i == -1)// { a = AddWordToVocab(word);// vocab[a].cn = 1; } else vocab[i].cn++;// if (vocab_size > vocab_hash_size * 0.7)// , ReduceVocab(); } SortVocab();// if (debug_mode > 0) { printf("Vocab size: %lld
", vocab_size); printf("Words in train file: %lld
", train_words); } file_size = ftell(fin); fclose(fin); } void SaveVocab() { long long i; FILE *fo = fopen(save_vocab_file, "wb"); for (i = 0; i < vocab_size; i++) fprintf(fo, "%s %lld
", vocab[i].word, vocab[i].cn); fclose(fo); } // , void ReadVocab() { long long a, i = 0; char c; char word[MAX_STRING]; FILE *fin = fopen(read_vocab_file, "rb");// if (fin == NULL) { printf("Vocabulary file not found
"); exit(1); } for (a = 0; a < vocab_hash_size; a++) vocab_hash[a] = -1; vocab_size = 0; while (1) { ReadWord(word, fin);// fin word if (feof(fin)) break; a = AddWordToVocab(word);// , fscanf(fin, "%lld%c", &vocab[a].cn, &c);// ?c , i++; } SortVocab();// if (debug_mode > 0) { printf("Vocab size: %lld
", vocab_size); printf("Words in train file: %lld
", train_words); } // fin = fopen(train_file, "rb"); if (fin == NULL) { printf("ERROR: training data file not found!
"); exit(1); } fseek(fin, 0, SEEK_END); file_size = ftell(fin); fclose(fin); } void InitNet() { long long a, b; a = posix_memalign((void **)&syn0, 128, (long long)vocab_size * layer1_size * sizeof(real)); // , 128 if (syn0 == NULL) { printf("Memory allocation failed
"); exit(1); } if (hs)// softmax { a = posix_memalign((void **)&syn1, 128, (long long)vocab_size * layer1_size * sizeof(real)); if (syn1 == NULL) { printf("Memory allocation failed
"); exit(1); } for (b = 0; b < layer1_size; b++) for (a = 0; a < vocab_size; a++) syn1[a * layer1_size + b] = 0; } if (negative>0)// { a = posix_memalign((void **)&syn1neg, 128, (long long)vocab_size * layer1_size * sizeof(real)); if (syn1neg == NULL) { printf("Memory allocation failed
"); exit(1); } for (b = 0; b < layer1_size; b++) for (a = 0; a < vocab_size; a++) syn1neg[a * layer1_size + b] = 0; } for (b = 0; b < layer1_size; b++) for (a = 0; a < vocab_size; a++) syn0[a * layer1_size + b] = (rand() / (real)RAND_MAX - 0.5) / layer1_size; CreateBinaryTree();// huffman , } // , : , huffman void *TrainModelThread(void *id) { long long a, b, d, word, last_word, sentence_length = 0, sentence_position = 0; long long word_count = 0, last_word_count = 0, sen[MAX_SENTENCE_LENGTH + 1]; long long l1, l2, c, target, label; unsigned long long next_random = (long long)id; real f, g; clock_t now; real *neu1 = (real *)calloc(layer1_size, sizeof(real)); real *neu1e = (real *)calloc(layer1_size, sizeof(real)); FILE *fi = fopen(train_file, "rb"); // 。 id fseek(fi, file_size / (long long)num_threads * (long long)id, SEEK_SET); while (1) { if (word_count - last_word_count > 10000) { word_count_actual += word_count - last_word_count; last_word_count = word_count; if ((debug_mode > 1)) { now=clock(); printf("%cAlpha: %f Progress: %.2f%% Words/thread/sec: %.2fk ", 13, alpha, word_count_actual / (real)(train_words + 1) * 100, word_count_actual / ((real)(now - start + 1) / (real)CLOCKS_PER_SEC * 1000)); fflush(stdout); } alpha = starting_alpha * (1 - word_count_actual / (real)(train_words + 1)); if (alpha < starting_alpha * 0.0001) alpha = starting_alpha * 0.0001; } if (sentence_length == 0) { while (1) { word = ReadWordIndex(fi);// , if (feof(fi)) break; if (word == -1) continue; word_count++; if (word == 0) break; // The subsampling randomly discards frequent words while keeping the ranking same if (sample > 0)// , 。 { real ran = (sqrt(vocab[word].cn / (sample * train_words)) + 1) * (sample * train_words) / vocab[word].cn; next_random = next_random * (unsigned long long)25214903917 + 11; if (ran < (next_random & 0xFFFF) / (real)65536) continue; } sen[sentence_length] = word; sentence_length++; //1000 ? if (sentence_length >= MAX_SENTENCE_LENGTH) break; } sentence_position = 0; } if (feof(fi)) break; if (word_count > train_words / num_threads) break;// , 。 word = sen[sentence_position]; if (word == -1) continue; for (c = 0; c < layer1_size; c++) neu1[c] = 0; for (c = 0; c < layer1_size; c++) neu1e[c] = 0; next_random = next_random * (unsigned long long)25214903917 + 11; b = next_random % window; if (cbow) { //train the cbow architecture // in -> hidden for (a = b; a < window * 2 + 1 - b; a++) if (a != window)// { c = sentence_position - window + a; if (c < 0) continue; if (c >= sentence_length) continue; last_word = sen[c]; if (last_word == -1) continue; for (c = 0; c < layer1_size; c++)//layer1_size , 100 neu1[c] += syn0[c + last_word * layer1_size];// ? } if (hs) for (d = 0; d < vocab[word].codelen; d++)// huffman , { f = 0; l2 = vocab[word].point[d] * layer1_size;//point huffman 。 , // Propagate hidden -> output for (c = 0; c < layer1_size; c++) f += neu1[c] * syn1[c + l2];// if (f <= -MAX_EXP) continue;// else if (f >= MAX_EXP) continue; else f = expTable[(int)((f + MAX_EXP) * (EXP_TABLE_SIZE / MAX_EXP / 2))];// sigmoid // 'g' is the gradient multiplied by the learning rate g = (1 - vocab[word].code[d] - f) * alpha;// //layer1_size // Propagate errors output -> hidden , huffman 。 ,syn1[c + l2] 。 for (c = 0; c < layer1_size; c++) neu1e[c] += g * syn1[c + l2]; // Learn weights hidden -> output , neu1[c] for (c = 0; c < layer1_size; c++) syn1[c + l2] += g * neu1[c]; } // NEGATIVE SAMPLING if (negative > 0) for (d = 0; d < negative + 1; d++) { if (d == 0) { target = word;// label = 1;// } else { next_random = next_random * (unsigned long long)25214903917 + 11; target = table[(next_random >> 16) % table_size]; if (target == 0) target = next_random % (vocab_size - 1) + 1; if (target == word) continue; label = 0;// } l2 = target * layer1_size; f = 0; for (c = 0; c < layer1_size; c++) f += neu1[c] * syn1neg[c + l2];// if (f > MAX_EXP) g = (label - 1) * alpha; else if (f < -MAX_EXP) g = (label - 0) * alpha; else g = (label - expTable[(int)((f + MAX_EXP) * (EXP_TABLE_SIZE / MAX_EXP / 2))]) * alpha; for (c = 0; c < layer1_size; c++) neu1e[c] += g * syn1neg[c + l2];// for (c = 0; c < layer1_size; c++) syn1neg[c + l2] += g * neu1[c];// } // hidden -> in for (a = b; a < window * 2 + 1 - b; a++) if (a != window)//cbow , 。 { c = sentence_position - window + a; if (c < 0) continue; if (c >= sentence_length) continue; last_word = sen[c]; if (last_word == -1) continue; for (c = 0; c < layer1_size; c++) syn0[c + last_word * layer1_size] += neu1e[c];// } } else { //train skip-gram for (a = b; a < window * 2 + 1 - b; a++) if (a != window)// { c = sentence_position - window + a; if (c < 0) continue; if (c >= sentence_length) continue; last_word = sen[c]; if (last_word == -1) continue; l1 = last_word * layer1_size; for (c = 0; c < layer1_size; c++) neu1e[c] = 0; // HIERARCHICAL SOFTMAX if (hs) for (d = 0; d < vocab[word].codelen; d++)// { f = 0; l2 = vocab[word].point[d] * layer1_size;//point huffman // Propagate hidden -> output , , 。 for (c = 0; c < layer1_size; c++) f += syn0[c + l1] * syn1[c + l2];// if (f <= -MAX_EXP) continue; else if (f >= MAX_EXP) continue; else f = expTable[(int)((f + MAX_EXP) * (EXP_TABLE_SIZE / MAX_EXP / 2))]; // 'g' is the gradient multiplied by the learning rate g = (1 - vocab[word].code[d] - f) * alpha;// // Propagate errors output -> hidden for (c = 0; c < layer1_size; c++) neu1e[c] += g * syn1[c + l2];// // Learn weights hidden -> output for (c = 0; c < layer1_size; c++) syn1[c + l2] += g * syn0[c + l1];// } // NEGATIVE SAMPLING if (negative > 0)// cobow for (d = 0; d < negative + 1; d++) { if (d == 0) { target = word; label = 1; } else { next_random = next_random * (unsigned long long)25214903917 + 11; target = table[(next_random >> 16) % table_size]; if (target == 0) target = next_random % (vocab_size - 1) + 1; if (target == word) continue; label = 0; } l2 = target * layer1_size; f = 0; for (c = 0; c < layer1_size; c++) f += syn0[c + l1] * syn1neg[c + l2]; if (f > MAX_EXP) g = (label - 1) * alpha; else if (f < -MAX_EXP) g = (label - 0) * alpha; else g = (label - expTable[(int)((f + MAX_EXP) * (EXP_TABLE_SIZE / MAX_EXP / 2))]) * alpha; for (c = 0; c < layer1_size; c++) neu1e[c] += g * syn1neg[c + l2]; for (c = 0; c < layer1_size; c++) syn1neg[c + l2] += g * syn0[c + l1]; } // Learn weights input -> hidden for (c = 0; c < layer1_size; c++) syn0[c + l1] += neu1e[c];// } } sentence_position++; if (sentence_position >= sentence_length) { sentence_length = 0; continue; } } fclose(fi); free(neu1); free(neu1e); pthread_exit(NULL); } void TrainModel() { long a, b, c, d; FILE *fo; pthread_t *pt = (pthread_t *)malloc(num_threads * sizeof(pthread_t)); printf("Starting training using file %s
", train_file); starting_alpha = alpha; if (read_vocab_file[0] != 0) ReadVocab();// else LearnVocabFromTrainFile();// if (save_vocab_file[0] != 0) SaveVocab();// if (output_file[0] == 0) return; InitNet(); if (negative > 0) InitUnigramTable(); start = clock(); for (a = 0; a < num_threads; a++) pthread_create(&pt[a], NULL, TrainModelThread, (void *)a); for (a = 0; a < num_threads; a++) pthread_join(pt[a], NULL); fo = fopen(output_file, "wb"); if (classes == 0) // , { // Save the word vectors fprintf(fo, "%lld %lld
", vocab_size, layer1_size); for (a = 0; a < vocab_size; a++) { fprintf(fo, "%s ", vocab[a].word); if (binary) for (b = 0; b < layer1_size; b++) fwrite(&syn0[a * layer1_size + b], sizeof(real), 1, fo); else for (b = 0; b < layer1_size; b++) fprintf(fo, "%lf ", syn0[a * layer1_size + b]); fprintf(fo, "
"); } } else // k-means { // Run K-means on the word vectors int clcn = classes, iter = 10, closeid; int *centcn = (int *)malloc(classes * sizeof(int));// int *cl = (int *)calloc(vocab_size, sizeof(int));// real closev, x; real *cent = (real *)calloc(classes * layer1_size, sizeof(real));// for (a = 0; a < vocab_size; a++) cl[a] = a % clcn;// ? for (a = 0; a < iter; a++) { for (b = 0; b < clcn * layer1_size; b++) cent[b] = 0;// for (b = 0; b < clcn; b++) centcn[b] = 1; for (c = 0; c < vocab_size; c++) { for (d = 0; d < layer1_size; d++) cent[layer1_size * cl[c] + d] += syn0[c * layer1_size + d];// centcn[cl[c]]++;// 1 } for (b = 0; b < clcn; b++)// { closev = 0; for (c = 0; c < layer1_size; c++) { cent[layer1_size * b + c] /= centcn[b];// , closev += cent[layer1_size * b + c] * cent[layer1_size * b + c]; } closev = sqrt(closev); for (c = 0; c < layer1_size; c++) cent[layer1_size * b + c] /= closev;// ? } for (c = 0; c < vocab_size; c++)// { closev = -10; closeid = 0; for (d = 0; d < clcn; d++) { x = 0; for (b = 0; b < layer1_size; b++) x += cent[layer1_size * d + b] * syn0[c * layer1_size + b];// if (x > closev) { closev = x; closeid = d; } } cl[c] = closeid; } } // Save the K-means classes for (a = 0; a < vocab_size; a++) fprintf(fo, "%s %d
", vocab[a].word, cl[a]); free(centcn); free(cent); free(cl); } fclose(fo); } int ArgPos(char *str, int argc, char **argv) { int a; for (a = 1; a < argc; a++) if (!strcmp(str, argv[a])) { if (a == argc - 1) { printf("Argument missing for %s
", str); exit(1); } return a; } return -1; } int main(int argc, char **argv) { int i; if (argc == 1) { printf("WORD VECTOR estimation toolkit v 0.1b

"); printf("Options:
"); printf("Parameters for training:
"); // : printf("\t-train <file>
"); printf("\t\tUse text data from <file> to train the model
"); // : printf("\t-output <file>
"); printf("\t\tUse <file> to save the resulting word vectors / word clusters
"); // , 100 printf("\t-size <int>
"); printf("\t\tSet size of word vectors; default is 100
"); // , 5 printf("\t-window <int>
"); printf("\t\tSet max skip length between words; default is 5
"); // , printf("\t-sample <float>
"); printf("\t\tSet threshold for occurrence of words. Those that appear with higher frequency"); printf(" in the training data will be randomly down-sampled; default is 0 (off), useful value is 1e-5
"); // softmax printf("\t-hs <int>
"); printf("\t\tUse Hierarchical Softmax; default is 1 (0 = not used)
"); // , 0, 5-10。0 。 printf("\t-negative <int>
"); printf("\t\tNumber of negative examples; default is 0, common values are 5 - 10 (0 = not used)
"); // printf("\t-threads <int>
"); printf("\t\tUse <int> threads (default 1)
"); // 。 , 。 printf("\t-min-count <int>
"); printf("\t\tThis will discard words that appear less than <int> times; default is 5
"); // , 0.025 printf("\t-alpha <float>
"); printf("\t\tSet the starting learning rate; default is 0.025
"); // , printf("\t-classes <int>
"); printf("\t\tOutput word classes rather than word vectors; default number of classes is 0 (vectors are written)
"); //debug , 2, printf("\t-debug <int>
"); printf("\t\tSet the debug mode (default = 2 = more info during training)
"); // binary , 0, 。 printf("\t-binary <int>
"); printf("\t\tSave the resulting vectors in binary moded; default is 0 (off)
"); // printf("\t-save-vocab <file>
"); printf("\t\tThe vocabulary will be saved to <file>
"); // , printf("\t-read-vocab <file>
"); printf("\t\tThe vocabulary will be read from <file>, not constructed from the training data
"); // continuous bag of words 。 0, skip-gram 。 printf("\t-cbow <int>
"); printf("\t\tUse the continuous bag of words model; default is 0 (skip-gram model)
"); // printf("
Examples:
"); printf("./word2vec -train data.txt -output vec.txt -debug 2 -size 200 -window 5 -sample 1e-4 -negative 5 -hs 0 -binary 0 -cbow 1

"); return 0; } output_file[0] = 0; save_vocab_file[0] = 0; read_vocab_file[0] = 0; if ((i = ArgPos((char *)"-size", argc, argv)) > 0) layer1_size = atoi(argv[i + 1]); if ((i = ArgPos((char *)"-train", argc, argv)) > 0) strcpy(train_file, argv[i + 1]); if ((i = ArgPos((char *)"-save-vocab", argc, argv)) > 0) strcpy(save_vocab_file, argv[i + 1]); if ((i = ArgPos((char *)"-read-vocab", argc, argv)) > 0) strcpy(read_vocab_file, argv[i + 1]); if ((i = ArgPos((char *)"-debug", argc, argv)) > 0) debug_mode = atoi(argv[i + 1]); if ((i = ArgPos((char *)"-binary", argc, argv)) > 0) binary = atoi(argv[i + 1]); if ((i = ArgPos((char *)"-cbow", argc, argv)) > 0) cbow = atoi(argv[i + 1]); if ((i = ArgPos((char *)"-alpha", argc, argv)) > 0) alpha = atof(argv[i + 1]); if ((i = ArgPos((char *)"-output", argc, argv)) > 0) strcpy(output_file, argv[i + 1]); if ((i = ArgPos((char *)"-window", argc, argv)) > 0) window = atoi(argv[i + 1]); if ((i = ArgPos((char *)"-sample", argc, argv)) > 0) sample = atof(argv[i + 1]); if ((i = ArgPos((char *)"-hs", argc, argv)) > 0) hs = atoi(argv[i + 1]); if ((i = ArgPos((char *)"-negative", argc, argv)) > 0) negative = atoi(argv[i + 1]); if ((i = ArgPos((char *)"-threads", argc, argv)) > 0) num_threads = atoi(argv[i + 1]); if ((i = ArgPos((char *)"-min-count", argc, argv)) > 0) min_count = atoi(argv[i + 1]); if ((i = ArgPos((char *)"-classes", argc, argv)) > 0) classes = atoi(argv[i + 1]); vocab = (struct vocab_word *)calloc(vocab_max_size, sizeof(struct vocab_word)); vocab_hash = (int *)calloc(vocab_hash_size, sizeof(int)); expTable = (real *)malloc((EXP_TABLE_SIZE + 1) * sizeof(real)); for (i = 0; i < EXP_TABLE_SIZE; i++) { //expTable[i] = exp((i -500)/ 500 * 6) e^-6 ~ e^6 expTable[i] = exp((i / (real)EXP_TABLE_SIZE * 2 - 1) * MAX_EXP); // Precompute the exp() table //expTable[i] = 1/(1+e^6) ~ 1/(1+e^-6) 0.01 ~ 1 expTable[i] = expTable[i] / (expTable[i] + 1); // Precompute f(x) = x / (x + 1) } TrainModel(); return 0; }

글 쓴 이:linger
본문 링크:http://blog.csdn.net/lingerlanlan/article/details/38232755

좋은 웹페이지 즐겨찾기