현대암호학 6. Basic Mathmatics for Cryptography - Euclid's Algorithm & Fermat's Little Theorem & Euler's Theorem (extended) Euclid's Algorithm prime number prime number = 소수 = only have divisors of 1 and self n = a X b X c relatively prime numbers by comparing their prime factorizations & using the least common powers(가장 큰 공약수) -> ... 정보보안CSSSU현대암호학CS 4. Theory of Secure Communication - part 1 P(M|C) = C를 얻은 attacker가 제대로 M을 해독할 확률 = prob. of M given C intercepted P(C|M) = M에 의해 C가 생성될 확률 = prob. of C generated by M P(M) = M이 선택될 확률 = prob. P(C) = C가 입수될 확률 = prob. ✔️ Condition for PERFECT SECRECY 🤔 IF P(M|C) ... 정보보안CSSSU현대암호학CS
6. Basic Mathmatics for Cryptography - Euclid's Algorithm & Fermat's Little Theorem & Euler's Theorem (extended) Euclid's Algorithm prime number prime number = 소수 = only have divisors of 1 and self n = a X b X c relatively prime numbers by comparing their prime factorizations & using the least common powers(가장 큰 공약수) -> ... 정보보안CSSSU현대암호학CS 4. Theory of Secure Communication - part 1 P(M|C) = C를 얻은 attacker가 제대로 M을 해독할 확률 = prob. of M given C intercepted P(C|M) = M에 의해 C가 생성될 확률 = prob. of C generated by M P(M) = M이 선택될 확률 = prob. P(C) = C가 입수될 확률 = prob. ✔️ Condition for PERFECT SECRECY 🤔 IF P(M|C) ... 정보보안CSSSU현대암호학CS